135 research outputs found
Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration.
BACKGROUND: Adaptation to chronic ethanol (EtOH) treatment of rats results in a changed functional state of the liver and greatly inhibits its regenerative ability, which may contribute to the progression of alcoholic liver disease.
METHODS: In this study, we investigated the effect of chronic EtOH intake on hepatic microRNA (miRNA) expression in male Sprague-Dawley rats during the initial 24 hours of liver regeneration following 70% partial hepatectomy (PHx) using miRNA microarrays. miRNA expression during adaptation to EtOH was investigated using RT-qPCR. Nuclear factor kappa B (NFκB) binding at target miRNA promoters was investigated with chromatin immunoprecipitation.
RESULTS: Unsupervised clustering of miRNA expression profiles suggested that miRNA expression was more affected by chronic EtOH feeding than by the acute challenge of liver regeneration after PHx. Several miRNAs that were significantly altered by chronic EtOH feeding, including miR-34a, miR-103, miR-107, and miR-122 have been reported to play a role in regulating hepatic metabolism and the onset of these miRNA changes occurred gradually during the time course of EtOH feeding. Chronic EtOH feeding also altered the dynamic miRNA profile during liver regeneration. Promoter analysis predicted a role for NFκB in the immediate-early miRNA response to PHx. NFκB binding at target miRNA promoters in the chronic EtOH-fed group was significantly altered and these changes directly correlated with the observed expression dynamics of the target miRNA.
CONCLUSIONS: Chronic EtOH consumption alters the hepatic miRNA expression profile such that the response of the metabolism-associated miRNAs occurs during long-term adaptation to EtOH rather than as an acute transient response to EtOH metabolism. Additionally, the dynamic miRNA program during liver regeneration in response to PHx is altered in the chronically EtOH-fed liver and these differences reflect, in part, differences in miRNA expression between the EtOH-adapted and control livers at the baseline state prior to PHx
On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks
The emergence of new network applications is driving network operators to not
only fulfill dynamic bandwidth requirements, but offer various grades of
service. Degraded provisioning provides an effective solution to flexibly
allocate resources in various dimensions to reduce blocking for differentiated
demands when network congestion occurs. In this work, we investigate the novel
problem of online degraded provisioning in service-differentiated multi-layer
networks with optical elasticity. Quality of Service (QoS) is assured by
service-holding-time prolongation and immediate access as soon as the service
arrives without set-up delay. We decompose the problem into degraded routing
and degraded resource allocation stages, and design polynomial-time algorithms
with the enhanced multi-layer architecture to increase the network flexibility
in temporal and spectral dimensions. Illustrative results verify that we can
achieve significant reduction of network service failures, especially for
requests with higher priorities. The results also indicate that degradation in
optical layer can increase the network capacity, while the degradation in
electric layer provides flexible time-bandwidth exchange.Comment: accepted by IEEE GLOBECOM 201
Evaluation of Soil Test Phosphorus Extractants in Idaho Soils
Soil P testing is critical to ensure the accuracy of fertilizer recommendations and to optimize crop yield while minimizing negative environmental consequences. Olsen-P is the most commonly used soil P test for alkaline calcareous soils found in Idaho and the western United States. The Bray- 1 test is commonly used in the Pacific Northwest on neutral to acidic soils but underestimates P in alkaline calcareous soils. Mehlich-3 has been evaluated throughout various regions in the United States. Few data evaluating Mehlich-3 exist for soils in the western United States. Additionally, the comparatively newly developed Haney–Haney–Hossner–Arnold (H3A) test, a component of the soil health tool, has not been widely evaluated on alkaline calcareous soils. Soil samples from the 0- to 30-cm depth were collected from agricultural fields throughout Idaho and analyzed with Bray-1, H3A, Mehlich-3, and Olsen-P extractants. The results indicate that Olsen-P was correlated with Mehlich-3, whereas Bray-1 and H3A were not correlated with Olsen-P. Both Bray-1 and H3A resulted in lower values of extractable P than the Olsen-P test, whereas Mehlich-3 resulted in greater values. A threshold point in CaCO3 (i.e., inorganic C) of 6.7 and 5.1 mg kg-1 for the Bray-1 and H3A was obtained, respectively, which indicated that inorganic C concentrations at or above these levels resulted in a reduction in extractable soil P. Thus Mehlich-3 could be evaluated for use in alkaline calcareous soils, whereas Bray-1 and H3A have notable issues that would limit their applicability
Baryon inhomogeneity generation via cosmic strings at QCD scale and its effects on nucleosynthesis
We have earlier shown that cosmic strings moving through the plasma at the
time of a first order quark-hadron transition in the early universe can
generate large scale baryon inhomogeneities. In this paper, we calculate
detailed structure of these inhomogeneities at the quark-hadron transition. Our
calculations show that the inhomogeneities generated by cosmic string wakes can
strongly affect nucleosynthesis calculations. A comparison with observational
data suggests that such baryon inhomogeneities should not have existed at the
nucleosynthesis epoch. If this disagreement holds with more accurate
observations, then it will lead to the conclusions that cosmic string formation
scales above GeV may not be consistent with nucleosynthesis
and CMBR observations. Alternatively, some other input in our calculation
should be constrained, for example, if the average string velocity remains
sufficiently small so that significant density perturbations are never produced
at the QCD scale, or if strings move ultra-relativistically so that string
wakes are very thin, trapping negligible amount of baryons. Finally, if
quark-hadron transition is not of first order then our calculations do not
apply.Comment: 24 pages, 5 figures, minor changes, version to appear in Phys. Rev.
Cosmic string induced sheet like baryon inhomogeneities at quark-hadron transition
Cosmic strings moving through matter produce wakes where density is higher
than the background density. We investigate the effects of such wakes occurring
at the time of a first order quark-hadron transition in the early universe and
show that they can lead to separation of quark-gluon plasma phase in the wake
region, while the region outside the wake converts to the hadronic phase.
Moving interfaces then trap large baryon densities in sheet like regions which
can extend across the entire horizon. Typical separation between such sheets,
at formation, is of the order of a km. Regions of baryon inhomogeneity of this
nature, i.e. having a planar geometry, and separated by such large distance
scales, appear to be well suited for the recent models of inhomogeneous
nucleosynthesis to reconcile with the large baryon to photon ratio implied by
the recent measurements of the cosmic microwave background power spectrum.Comment: 8 pages, 3 figure
Estimating Demand for Infrastructure in Energy, Transport, Telecommunications, Water, and Sanitation in Asia and the Pacific: 2010-2020
Infrastructure plays a key role in promoting and sustaining rapid economic growth. Properly designed infrastructure can also make growth more inclusive by sharing its benefits with poorer groups and communities, especially by connecting remote areas and small and landlocked countries to major business centers. Even if the Asia-Pacific region has witnessed progress in infrastructure development, the growth of infrastructure lags behind its economic growth, and also behind international standards of infrastructure quantity and quality. Inadequate infrastructure can hamper the potential economic growth of Asian countries, weaken their international competitiveness, and adversely affect their poverty reduction efforts. The circumstances and effects of the recent economic and financial crisis provide a number of reasons to further develop national and regional infrastructure in Asia. Among these reasons is that regional infrastructure enhances competitiveness and productivity, which could help in economic recovery and in sustaining growth in the medium to long-term. Regional infrastructure also helps increase standard of living and reduce poverty by connecting isolated places and people with major economic centers and markets, narrowing the development gap among Asian economies. This paper estimates the need for infrastructure investment, including energy, transport, telecommunications, water, and sanitation during 2010-2020, in order to meet growing demands for services and facilitate further rapid growth in the region. By using top-down and bottom-up approaches, this paper provides a comprehensive estimate of Asia's need for infrastructure services. The estimates show that developing countries in Asia require financing of US747 billion) and regional (US$29 billion) infrastructure during 2010-2020 to meet growing demand
Healing Potential of Picrorhiza kurroa (Scrofulariaceae) rhizomes against indomethacin-induced gastric ulceration: a mechanistic exploration.
<p>Abstract</p> <p>Background</p> <p>The present study was undertaken to evaluate the potential of the rhizomes of the Indian medicinal plant, <it>Picrorhiza kurroa </it>in healing indomethacin-induced acute stomach ulceration in mice and examine its capacity to modulate oxidative stress and the levels of prostaglandin (PGE<sub>2</sub>) and EGF during the process.</p> <p>Methods</p> <p>Male swiss albino mice, ulcerated with indomethacin (18 mg/kg, p. o., single dose) were treated up to 7 days with different doses of the methanol extract of <it>P. kurroa </it>rhizomes (designated as PK). The healing capacity of the most effective dose of PK (20 mg/kg, p. o. × 3 d) was compared with that of omeprazole (Omez) (3 mg/kg, p. o. × 3 d). The effects of the drug-treatment for one and three days on the biochemical parameters were assessed by comparing the results with that of untreated mice of the 1<sup>st </sup>and 3<sup>rd </sup>day of ulceration. The stomach tissues of the mice were used for the biochemical analysis.</p> <p>Results</p> <p>The macroscopic indices revealed maximum ulceration on the 3<sup>rd </sup>day after indomethacin administration, which was effectively healed by PK. Under the optimized treatment regime, PK and Omez reduced the ulcer indices by 45.1% (<it>P </it>< 0.01), and 76.3% respectively (<it>P </it>< 0.001), compared to the untreated ulcerated mice.</p> <p>Compared to the ulcerated untreated mice, those treated with PK for 3 days showed decreased the levels of thiobarbituric acid reactive substances (TBARS) (32.7%, <it>P </it>< 0.05) and protein carbonyl (37.7%, <it>P </it>< 0.001), and increased mucin (42.2%, <it>P </it>< 0.01), mucosal PGE<sub>2 </sub>(21.4%, <it>P </it>< 0.05), and expressions of COX-1 and 2 (26.9% and 18.5%, <it>P </it>< 0.05), EGF (149.0%, <it>P </it>< 0.001) and VEGF (56.9%, <it>P </it>< 0.01). Omez reduced the TBARS (29.4%, <it>P </it>< 0.05), and protein carbonyl (38.9%, <it>P </it>< 0.001), and increased mucin (38.3%, <it>P </it>< 0.01), without altering the other parameters significantly.</p> <p>Conclusion</p> <p>PK (20 mg/kg, p. o. × 3 days) could effectively heal indomethacin-induced stomach ulceration in mice by reducing oxidative stress, and promoting mucin secretion, prostaglandin synthesis and augmenting expressions of cyclooxygenase enzymes and growth factors.</p
Institutions for Asian Connectivity
To make Asia more economically sustainable and resilient against external shocks, regional economies need to be rebalanced toward regional demand- and trade-driven growth through increased regional connectivity. The effectiveness of connectivity depends on the quality of hard and soft infrastructure. Of particular importance in terms of soft infrastructure which makes hard infrastructure work are the facilitating institutions that support connectivity through appropriate policies, reforms, systems, and procedures and through promoting effective coordination and cooperation. Asia has many overlapping subregional institutions involved in national and regional energy, transport, and telecommunications infrastructure connectivity. However, these institutions are characterized as being less effective, informal, and lacking a clear and binding system of rules and policies. This paper draws linkages between connectivity, growth and development, governance, and institutions. It details the benefits the region could achieve by addressing needed connectivity enhancements and the connectivity and financing challenges it faces. In addition, it presents various institutional options for regional infrastructure financing. To build seamless Asian connectivity, Asia needs an effective, formal, and rules-based institutional framework. The paper presents a new institutional framework together with the organizational structures of two new regional institutional mechanisms, namely the Pan-Asian Infrastructure Forum and the Asian Infrastructure Fund
- …