10 research outputs found

    A replacement model for multi-tool transfer lines

    No full text
    Transfer lines have long been used for machining a single product at high production rates. This study deals with the transfer line, in particular, estimating the production time per part and the effect of using probability models in describing tool and machine lives. The production time is estimated using three major causes of line stoppage. An aspiration level criterion is used to establish a scheduled tool replacement interval. The aspiration decision parameter is system reliability. It is shown how a scheduled tool replacement interval could be established to obtain this reliability level. A methodology for selecting the replacement interval for a group of tools is developed and the impact of changing this interval on tool changing costs and tool failure costs is discussed. In this study, only a single premature tool failure is assumed to occur; however, the results are compared with multiple tool failures using the renewal function. It is shown that this single premature failure analysis is equivalent to the renewal function approach for machining systems having a reliability greater than 50 percent and tool failure variabilities having a coefficient of variation less than 1.0. Using the model developed in this paper, an example problem is presented. For this problem, electromechanical equipment failure and tool wear failures are modeled using the exponential and the Weibull probability distributions, respectively. Scheduled tool replacement intervals are developed for a range of target reliabilities. The part cycle time and operating cost for the transfer line based on these reliabilities are computed. These results are compared to the minimum cost reliability level. The minimum cost operating condition is dependent on the ratio of the scheduled replacement costs over the failure replacement costs. For the example presented, the reliability level at minimum cost is much lower than the desired target value of.9. This result illustrates the importance of conducting a careful analysis and using the results to help guide operating practices toward more efficient tool change practices and maintenance policies. © 1990 by ASME

    A general optimization model for Multi-Tool manufacturing systems

    No full text
    A machining center is a single numerically-controlled machine that incorporates several time-saving features and performs a multiplicity of operations. The life of cutting tools used in machining centers is modeled using probabilistic methods because of the stochastic nature and variability of tool-wear data. An approximate expression for the renewal function is used to establish an optimum scheduled tool replacement interval and an optimum set of cutting conditions to obtain a minimum production cost. A general optimization model for the multi-tool machining center is formulated considering practical machine constraints. Premature failure cost is not considered constant in this study. It is estimated using the tool cost, the expected cost of unplanned downtime, and the expended cost of product damage by premature tool failure. A user friendly computer program was developed to solicit information from a production engineer regarding cutting operations for the various tools used at the machining center. A sensitivity analysis on the results of the optimization process is presented. © 1991 by ASME

    Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models

    No full text
    corecore