46 research outputs found

    Long Lasting Egocentric Disorientation Induced by Normal Sensori-Motor Spatial Interaction

    Get PDF
    Perception of the cardinal directions of the body, right-left, up-down, ahead-behind, which appears so absolute and fundamental to the organisation of behaviour can in fact, be modified. Perhaps unsurprisingly, it has been shown that prolonged distorted perception of the orientation of body axes can be a consequence of disordered sensori-motor signals, including long-term prismatic adaptation and lesions of the central nervous system. We report the novel and surprising finding that a long-lasting distortion of perception of personal space can also be induced by an ecological pointing task without the artifice of distorting normal sensori-motor relationships.Twelve right-handed healthy adults performed the task of pointing with their arms, without vision, to indicate their subjective 'straight ahead', a task often used to assess the Egocentric Reference. This was performed before, immediately, and one day after a second task intended to 'modulate' perception of spatial direction. The 'modulating' task lasted 5 minutes and consisted of asking participants to point with the right finger to targets that appeared only in one (right or left) half of a computer screen. Estimates of the 'straight-ahead' during pre-test were accurate (inferior to 0.3 degrees deviation). Significantly, up to one day after performing the modulating task, the subjective 'straight-ahead' was deviated (by approximately 3.2 degrees) to the same side to which subjects had pointed to targets.These results reveal that the perception of directional axes for behaviour is readily influenced by interactions with the environment that involve no artificial distortion of normal sensori-motor-spatial relationships and does not necessarily conform to the cardinal directions as defined by the anatomy of orthostatic posture. We thus suggest that perceived space is a dynamic construction directly dependent upon our past experience about the direction and/or the localisation of our sensori-motor spatial interaction with environment

    [Egocentric reference and represented space].

    No full text
    International audienceThe subjective estimate of the position of the egocentric reference was measured in normal right-handed subjects. They had to point manually in the straight ahead direction at what they thought was their body's sagittal plane. A systematic leftward bias of relatively small amplitude was observed for pointings with the right hand. No such bias was observed with the left hand. In addition, fixation of a visual target located within the right or left hemispace systematically deviated the estimated egocentric reference toward the side opposite to the target. These results contribute to the mechanisms responsible for directional coding of movements toward extrapersonal space

    Neck muscle vibration modifies the representation of visual motion and direction in man.

    No full text
    International audienceThe retinal coordinates of an image are normally insufficient to define the direction of an object in body-centred visual space. Gaze direction, specified by information on the position of eye-in-head and on the position of head-on-torso, is also required. While the source of the eye-in-head signal is controversial, it is clear that proprioceptive signals from neck muscles are sufficient to provide head-on-torso information. Observations by Goodwin et al., beginning in 1972, that vibration of limb muscles modifies proprioception from them, and induces illusory motion and false perception of limb position, suggested this study of the effects of neck muscle vibration on the representation of visual space. Verbal reports, supported by objective measures, revealed that vibration of muscles on one side of the neck induces a visual illusion: contralateral displacement of a small visual target viewed in the dark. Pointing movements towards the target are similarly affected, confirming that the representation of directions in visual space is modified by neck muscle vibration. A second vibration-induced illusion was uncovered when apparent displacement ceased. This is an illusion of pure target motion in the same direction as the previously observed displacement. The magnitudes of both the displacement and pure motion illusions were dependent on vibration amplitude and were unrelated to real or apparent movements of eyes or head. Taken together these observations indicate that vibration of neck muscles can modify independently (1) the central representation of the instantaneous direction of gaze and (2) the signal of the velocity with which this direction is changing
    corecore