18 research outputs found

    Selected harmful elements in polish lignite

    No full text
    W węglu brunatnym z polskich złóż występują liczne pierwiastki rzadkie, śladowe i rozproszone, z których część może wywierać niekorzystny wpływ na środowisko naturalne oraz człowieka. Jednak pierwiastki te w większości nie osiągają koncentracji szkodliwych w analizowanym węglu. W pracy zbadano zawartości wybranych pierwiastków szkodliwych w każdym stężeniu i pierwiastków szkodliwych w większym stężeniu. Analizowano udział tych elementów zarówno w próbkach węgla brunatnego, jak i popiołach tego surowca uzyskanych metodą powolnego spalania. Do pierwiastków toksycznych w każdym stężeniu zaliczono Pb, Hg, Cd, Be, As, a w większym stężeniu: Zn, Se, Sb, Cu, Mn. Pierwiastki śladowe oznaczano metodą instrumentalnej neutronowej analizy aktywacyjnej (INAA), ICPMS-Mikrofala i ICP-OES. Ze względu na brak norm określających dopuszczalną zawartość pierwiastków szkodliwych w węglu brunatnym oparto się na porównywaniu oznaczonej zawartości z dopuszczalnymi dziennymi dawkami dla ludzi i dopuszczalnej zawartości tych pierwiastków w glebach oraz w wodach. Zawartość Hg, Pb, As i Cd w badanym węglu brunatnym jest nieduża, a ich stężenia osiągają maksymalnie: Hg do 2,6 ppm, Pb do 26,22 ppm, As do 19,72 ppm i Cd do 17,76 ppm. Podane koncentracje są bardzo małe w porównaniu do granicznych dopuszczalnych wartości w glebach. Wyjątek stanowi średnia zawartość rtęci w złożu Adamów. Zawartość pierwiastków toksycznych w popiołach jest wyższa w porównaniu z węglem surowym, co świadczy, że składniki te związane są z substancją mineralną węgla. Zawartość innych oznaczonych pierwiastków śladowych (Sb, Zn, Mn i Cu) w badanym węglu jest również nieduża i nie stanowi zagrożenia dla środowiska naturalnego. Jednocześnie pierwiastki takie jak Mn, Pb i Cu mają małą lotność, przez co obserwuje się ich koncentrację w popiele po spaleniu węgla. Z drugiej strony takie pierwiastki jak Cd i Hg ze względu na swoją wysoką lotność ulatniają się w trakcie spalania wraz ze spalinami i dlatego ich zawartość w popiele jest niższa niż w węglu.Lignite from Polish deposits includes numerous rare elements, trace elements and dispersed elements, some of which may have a negative impact on the environment and human health. However, these elements usually do not reach harmful concentration within analyzed coal. This study examined the content of selected elements harmful at each concentration, and elements harmful at higher concentrations. The analysis included the samples of lignite and ash produced during the combustion of coal. Elements toxic at each concentration included: Pb, Hg, Cd, Be and As, while elements toxic at higher concentrations were: Zn, Se, Sb, Cu and Mn. Trace elements were determined though the use of instrumental neutron activation analysis (INAA), inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Due to the lack of standards defining the permissible content of harmful elements in lignite, the examination was based on a comparison of the observed content with acceptable daily intake for humans and maximum permissible levels of these elements in soils and waters. Within the tested lignite, Hg, Pb, As and Cd content is low, while their concentration reaches a maximum of up to 2.6 ppm Hg, 26.22 ppm Pb, 19.72 ppm As and 17.76 ppm Cd. These concentrations are very small compared to the maximum permissible levels in soils. The exception is the average mercury content in the “Adamów” lignite deposit. The content of toxic elements in ash is higher than in the raw coal, suggesting that they are related to the mineral matter of coal. At the same time elements like Mn, Pb and Cu have low volatility, which is responsible for their concentration in the ash after combustion of coal. On the other hand, elements like Cd and Hg evaporate during combustion together with flue gas due to their high volatility, and therefore their content in ash is lower than their content in coal. The content of other trace elements (Sb, Zn, Mn and Cu) is also low in lignite and does not pose a threat to the environment

    Lithotype coal as one of the indicators of the suitability of lignite for clean coal technologies

    No full text
    W pracy przedstawiono wstępną analizę wpływu budowy petrograficznej węgla brunatnego, rozumianej jako wykształcenie litotypowe (określane makroskopowo), na jego parametry fizyczne, chemiczne oraz technologiczne. Celem badań makroskopowych jest wyróżnienie litotypów i ich odmian w profilu pokładu, jego fragmencie lub próbce produkcyjnej o dokładności dostosowanej do stopnia rozpoznania węgla. Charakter petrograficzny węgla brunatnego w profilu pokładu wstępnie informuje o zmienności jego cech technologicznych. Badania prezentują analizę parametrów istotnych w czystych technologiach węglowych, a w szczególności zgazowaniu w gazogeneratorach naziemnych. Do parametrów tych należy zaliczyć parametry energetyczne węgla takie jak wartość opałowa, wilgoć, popielność i reaktywność. Wstępne wyniki sugerują, że skład litotypowy węgla brunatnego ma znaczny wpływ na jego jakość. W analizie petrograficznej określono, że głównymi litotypami budującymi wybrane polskie pokłady węgla są: węgiel detrytowy, ksylodetrytowy, detroksylitowy i ksylitowy. Udział poszczególnych litotypów jest różny w zależności od rejonu oraz grupy pokładów. W polskich złożach najczęściej występuje węgiel detrytowy. Węgiel bitumiczny w znacznej ilości występuje tylko w niewielu złożach np. Turów, Szczerców i Kaławsk. W określaniu przydatności węgla do zgazowania ważne jest zwrócenie uwagi na ilość i rodzaj ksylitów. Ksylity w badanych złożach stanowią średnio 5,4%, przy czym tylko nieliczne próby zawierały ponad 10% ksylitów. Ksylity włókniste są niepożądanym składnikiem węgla do zgazowania. Ich średnia zawartość w polskim węglu wynosi 0,7%. Ksylity włókniste w ilościach kilku procent występują w części złóż i są głównie związane z I środkowopolską grupą pokładów w rejonie Konina i Radomia.The paper presents a preliminary analysis of the impact of the petrographic composition of coal, understood as lithotype composition (defined macroscopically), on its physical, chemical and technological parameters. The macroscopic studies are aimed at identifying lithotypes and their variations within the coal seam, its portion or production sample, with accuracy adapted to the level of exploration of a given coal deposit). Petrographic cha racteristics of the selected lignite seam provide preliminary information about the variability of its technological parameters. Special attention has been paid to the analysis of parameters crucial for clean coal technologies, with particular emphasis placed on the surface gasification of coal. The aforementioned parameters include such coal energy parameters as: net calorific value, moisture, ash content and the reactivity. The preliminary results suggest that the lithotype composition of lignite has a significant impact on its quality. The occurrence of bituminiferous (sapropelic) coal, xylites and mineral matter in deposits is of particular importance. Therefore, measuring stratigraphic sections containing coal seams and a lithological characterization are especially important during the exploration activities. The petrographic analysis allowed for a determination that the main lithotypes of the selected Polish coal seams are: detritic coal, xylo-detritic coal, detro-xylitic coal, and xylite. The share of individual lithotypes varies depending on the area and group of seams. Polish coal deposits are usually dominated by detritic coal. Significant amounts of sapropelic coal can be found in several deposits, including Turów, Szczerców and Kaławsk. When determining the suitability of coal for the gasification process, it is crucial to pay attention to the amount and type of xylites. In the studied deposits, the average share of xylites amounts to 5.4%. Meanwhile, only a few samples contained more than 10% of xylites. Fibrous xylites are unfavorable for the gasification process. However, their average content in Polish coal is 0.7%. Fibrous xylites (not exceeding a few percent share) occur only in a part of the deposits and are mainly associated with the 1st Mid-Polish seam in the area of Konin and Radom

    The petrographic structure of the lignite seam from the Turów deposit subjected to gasification process in the ex situ pilot plant

    No full text
    Za pomocą badań petrograficznych scharakteryzowano budowę pokładu węgla brunatnego ze złoża Turów poddanego procesowi zgazowania w doświadczalnej instalacji ex situ w Kopalni Doświadczalnej „Barbara” w Mikołowie. Reaktor powierzchniowy ex situ pozwala na symulowane warunków podziemnego zgazowania węgla. Pokład poddany zgazowaniu to głównie węgiel ksylo-detrytowy oraz węgiel bitumiczny. Analiza chemiczno-technologiczna wykazała, że pokład ma dobre własności technologiczne. Ogólnie profilowany pokład wykazuje dużą przydatność do produkcji gazu syntezowego, co potwierdzają wyniki uzyskane w takcie próby zgazowania w reaktorze ex situ.Petrographic studies were carried out to characterize the structure of the lignite seam from the Turów deposit, which was subjected to gasification process in the ex situ pilot plant in the „Barbara” experimental lignite mine in Mikołów. The Surface (ex situ) reactor allows simulating the conditions of underground coal gasification. The gasified seam is composed mainly of xylo-detritic coal and sapropelic coal. The chemical and technological analysis has shown that the discussed seam has good technological properties. Generally, the profiled seam shows high suitability for the production of synthesis gas, which is confirmed by the results obtained during the experimental gasification in the ex situ reactor

    Przydatność polskich złóż miękkiego węgla brunatnego w czystych technologiach węglowych

    No full text
    The article presents the suitability of polish lignite deposits for clean coal technologies, mainly fluidized bed gasification and underground gasification. One of the key elements in this study, is a detailed diagnosis of the resource base, its analysis on the basis of the established verification criteria and -as a result – the achievement of a reliable assessment of suitability for highly efficient production of fuels and electric energy through lignite gasification in both surface and underground installations, taking into account both sozological conditions and protected geological sites. The analysis has shown that only 10 out of from 166 lignite deposit meet the criteria for the potential development of process underground gasification. In Poland, there is a core group of 30 lignite deposits with the ash content ranging from 20 to 25%, which fully meet the criteria for surface gasification. The lignite reserves in this group are over 11 billion tons, but only around one billion tons can be efficiently used for fluidized bed gasification process. Taking the geological structure into account, there is sufficient lignite resource base for both gas production and energy purposes. None of the attempts to use lignite for purposes other than combustion have ever been brought to the production stage. The gasification of lignite in Poland is a completely new opportunity for processing lignite, yet completely unused. This direction meets the criteria of clean coal technologies.W artykule przedstawiono przydatności polskich złóż węgla brunatnego dla czystych technologii węglowych, głównie zgazowania ze złożem fluidalnym i zgazowania podziemnego. Jednym z kluczowych elementów badań była szczegółowa analiza bazy zasobowej na podstawie ustalonych kryteriów weryfikacji i – jako rezultat – osiągnięcie wiarygodnej oceny przydatności do czystych technologii węglowych z uwzględnieniem warunków ochrony środowiska i sozologicznych. Analiza wykazała, że tylko 10 złóż spośród 166 spełnia kryteria dla potencjalnego rozwoju procesu podziemnego zgazowania. W Polsce istnieje około 30 złóż węgla brunatnego o zawartości popiołu od 20 do 25%, które w pełni spełniają kryteria zgazowania fluidalnego na powierzchni w gazogeneratorze. Zasoby węgla brunatnego w tej grupie to ponad 11 mld ton, ale tylko około jeden miliard ton może zostać efektywnie wykorzystane do procesu zgazowania ze złożem fluidalnym. Biorąc pod uwagę strukturę geologiczną, nie jest wystarczająca baza zasobów węgla brunatnego zarówno do celów produkcji gazu i energii. Żadna z prób wykorzystujących węgiel brunatny do celów innych niż spalanie nigdy nie zostały doprowadzone do etapu produkcji. Zgazowanie węgla brunatnego w Polsce jest zupełnie nową szansą dla przetwórstwa węgla brunatnego, ale zupełnie niewykorzystaną. Ten kierunek spełnia kryteria czystych technologii węglowych

    Preliminary assessment of the usefulness of the lignite from Gubin deposit in the gasification process

    No full text
    W artykule zaprezentowano możliwość użytkowania węgla brunatnego ze złoża Gubin w głównych typach gazogeneratorów: ze złożem stałym lub przesuwnym (moving bed), ze złożem fluidalnym (fluidised bed) i dyspersyjnych (przepływowe, strumieniowe) (entrained flow). Zbadano istotne w procesie zgazowania parametry węgla, takie jak: całkowita wilgotność, popielność, całkowita zawartość siarki, zawartość węgla i temperatura topnienia popiołu. Wyniki porównano z wymaganiami dla poszczególnych technologii zgazowania. Badany węgiel nie spełnia kryterium maksymalnej wilgotności, w związku z tym aby mógł być użytkowany w zgazowaniu, konieczne jest jego podsuszenie. Węgiel ze złoża Gubin spełnia kryterium maksymalnej popielności i minimalnej temperatury topnienia określone dla zgazowania ze złożem fluidalnym. Z przeprowadzonej wstępnej analizy jakości węgla brunatnego ze złoża Gubin wynika, że może być on wykorzystywany do zgazowaniu naziemnym w gazogeneratorze fluidalnym.The paper presents the possibility of using lignite from the Gubin deposit in the major types of gasification, including moving bed, fluidised bed and dispersion (entrained flow). Important parameters in the coal gasification process, such as total moisture, ash content, total sulfur content, carbon content and ash melting point, were studied. The results were compared with the requirements for each gasification technology. The coal does not meet the criterion of the maximum moisture content and – in order to be used in the gasification process – its drying is necessary. Lignite from the Gubin deposit meets the criteria of the maximum ash content and minimum melting temperature, specified for the fluidized bed gasification. A preliminary analysis of the quality of coal from the Gubin deposit suggests that it can be used in a ground-based gasification process using fluidized bed

    Selected harmful elements in Polish lignite

    No full text
    W węglu brunatnym z polskich złóż występują liczne pierwiastki rzadkie, śladowe i rozproszone, z których część może wywierać niekorzystny wpływ na środowisko naturalne oraz człowieka. Jednak pierwiastki te w większości nie osiągają koncentracji szkodliwych w analizowanym węglu. W pracy zbadano zawartości wybranych pierwiastków szkodliwych w każdym stężeniu i pierwiastków szkodliwych w większym stężeniu. Analizowano udział tych elementów zarówno w próbkach węgla brunatnego, jak i popiołach tego surowca uzyskanych metodą powolnego spalania. Do pierwiastków toksycznych w każdym stężeniu zaliczono Pb, Hg, Cd, Be, As, a w większym stężeniu: Zn, Se, Sb, Cu, Mn. Pierwiastki śladowe oznaczano metodą instrumentalnej neutronowej analizy aktywacyjnej (INAA), ICPMS-Mikrofala i ICP-OES. Ze względu na brak norm określających dopuszczalną zawartość pierwiastków szkodliwych w węglu brunatnym oparto się na porównywaniu oznaczonej zawartości z dopuszczalnymi dziennymi dawkami dla ludzi i dopuszczalnej zawartości tych pierwiastków w glebach oraz w wodach. Zawartość Hg, Pb, As i Cd w badanym węglu brunatnym jest nieduża, a ich stężenia osiągają maksymalnie: Hg do 2,6 ppm, Pb do 26,22 ppm, As do 19,72 ppm i Cd do 17,76 ppm. Podane koncentracje są bardzo małe w porównaniu do granicznych dopuszczalnych wartości w glebach. Wyjątek stanowi średnia zawartość rtęci w złożu Adamów. Zawartość pierwiastków toksycznych w popiołach jest wyższa w porównaniu z węglem surowym, co świadczy, że składniki te związane są z substancją mineralną węgla. Zawartość innych oznaczonych pierwiastków śladowych (Sb, Zn, Mn i Cu) w badanym węglu jest również nieduża i nie stanowi zagrożenia dla środowiska naturalnego. Jednocześnie pierwiastki takie jak Mn, Pb i Cu mają małą lotność, przez co obserwuje się ich koncentrację w popiele po spaleniu węgla. Z drugiej strony takie pierwiastki jak Cd i Hg ze względu na swoją wysoką lotność ulatniają się w trakcie spalania wraz ze spalinami i dlatego ich zawartość w popiele jest niższa niż w węglu.Lignite from Polish deposits includes numerous rare elements, trace elements and dispersed elements, some of which may have a negative impact on the environment and human health. However, these elements usually do not reach harmful concentration within analyzed coal. This study examined the content of selected elements harmful at each concentration, and elements harmful at higher concentrations. The analysis included the samples of lignite and ash produced during the combustion of coal. Elements toxic at each concentration included: Pb, Hg, Cd, Be and As, while elements toxic at higher concentrations were: Zn, Se, Sb, Cu and Mn. Trace elements were determined though the use of instrumental neutron activation analysis (INAA), inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Due to the lack of standards defining the permissible content of harmful elements in lignite, the examination was based on a comparison of the observed content with acceptable daily intake for humans and maximum permissible levels of these elements in soils and waters. Within the tested lignite, Hg, Pb, As and Cd content is low, while their concentration reaches a maximum of up to 2.6 ppm Hg, 26.22 ppm Pb, 19.72 ppm As and 17.76 ppm Cd. These concentrations are very small compared to the maximum permissible levels in soils. The exception is the average mercury content in the “Adamów” lignite deposit. The content of toxic elements in ash is higher than in the raw coal, suggesting that they are related to the mineral matter of coal. At the same time elements like Mn, Pb and Cu have low volatility, which is responsible for their concentration in the ash after combustion of coal. On the other hand, elements like Cd and Hg evaporate during combustion together with flue gas due to their high volatility, and therefore their content in ash is lower than their content in coal. The content of other trace elements (Sb, Zn, Mn and Cu) is also low in lignite and does not pose a threat to the environment

    Nowa technologiczna klasyfikacja węgla brunatnego podstawą zrównoważonej gospodarki energetycznej

    No full text
    At the present time, we are in search of the cheapest energy source. There is a chance, that the appropriate use of brown coal may result in one of the cheapest energy sources. Knowing about significant amounts of that resource in Poland, it should be noted, that its appropriate usage is very important. Currently, resources of brown coal are over 14 billion tons, which allows us to utilize coal at a similar level to today's for decades. Although the study of technological properties of brown coal in Poland has a long history, it seems reasonable to take another look at the issue of quality of coal, primarily in terms of its combustion with lower emissions of toxic compounds (mainly CO2) and the need for its sequestration. What is more, the possibility of chemical processing of coal, such as gasification and liquefaction, also should be considered. To resolve these issues, there is an urgent need for a new technological classification of brown coal. Currently, the country does not apply to any document classifying lignite in terms of possibility of its use. New scheme of technology classification should have a two-stage character. The first step is an indication of the rank and type of coal in referring to its origins, while the second step - more precise - is the distinction of classes and technological groups in the codification system. Such approach will result in technological classification of national low-rank coal in a way that fully meets the needs of technical legislation of both Polish and international law. Currently, many countries work on introduction of modern technological classification of coal. A comparison and ranking of the various classifications of lignite leads to clear afterthought, that they lack the needed determination of the possible use of tested coal. It is important, to - in response to global trends during the development of modern technological classification of low-rank coal - base on existing international standards, but with taking into account individual characteristics of national brown coal.Znajdujemy się obecnie w dobie poszukiwania coraz tańszych źródeł energii, a to właśnie węgiel brunatny jest jednym z najtańszych surowców energetycznych. Biorąc pod uwagę znaczące zasoby tej kopaliny w Polsce, należy zwrócić uwagę, jak ważne jest jej odpowiednie zagospodarowanie. Obecnie zasoby bilansowe węgla brunatnego to przeszło 14 mld ton, co pozwala użytkować węgiel na podobnym poziomie do dzisiejszego jeszcze przez kilkadziesiąt lat. Chociaż badania właściwości technologicznych węgla brunatnego mają w Polsce swoją długą historię, uzasadnione wydaje się nowe spojrzenie na zagadnienie jakości węgla, przede wszystkim pod kątem jego spalania z jak najniższym wydzielaniem związków toksycznych (głównie CO2) oraz koniecznością jego sekwestracji. Należy wziąć także pod uwagę możliwości chemicznej przeróbki węgla, takie jak zgazowanie i upłynnianie. Do rozwiązania tych kwestii pilnie potrzebna jest nowa klasyfikacja technologiczna węgla brunatnego. Obecnie w kraju nie obowiązuje żaden dokument klasyfikujący węgiel brunatny ze względu na możliwość jego zastosowania. Nowy schemat klasyfikacji technologicznej powinien mieć charakter dwustopniowy. Pierwszy stopień ma stanowić określenie rodzaju i typu węgla w sposób nawiązujący do jego genezy, podczas gdy drugi stopień - bardziej szczegółowy - to wyróżnienie klas i grup technologicznych w systemie kodowym. Efektem tak rozwiązanego problemu będzie zaklasyfikowanie technologiczne krajowego niskouwęglonego węgla w sposób w pełni spełniający potrzeby ustawodawstwa technicznego zarówno polskiego, jak i międzynarodowego. Obecnie w wielu krajach są prowadzone badania nad wprowadzeniem nowoczesnych technologicznych klasyfikacji węgla. Z porównania i zestawienia różnych klasyfikacji węgla brunatnego wyraźnie widać, iż brakuje w nich określenia możliwości użytkowania badanego węgla. Istotne jest, aby - w nawiązaniu do tendencji światowych przy tworzeniu nowoczesnej klasyfikacji technologicznej węgla niskouwęglonego - opierać się na istniejących normach międzynarodowych, jednak z wyraźnym uwzględnieniem specyfiki krajowego węgla brunatnego

    Selected toxic elements in lignite from the 'Gubin' lignite deposit

    No full text
    Badania objęły analizę 20 próbek mioceńskiego węgla brunatnego ze złoża 'Gubin' z 8 otworów wiertniczych. Metodą INAA analizowano zawartość metali ciężkich: As, Zn, Se, Hg i pierwiastków promieniotwórczych: Th, U, a metodą ASA: Cd i Pb. Badania wykazały, że kopalina nie zawiera wyraźnych koncentracji tych pierwiastków, a jedynie podwyższoną zawartość As, Th i U, która jest związana z dużym zapopieleniem badanych próbek.'Gubin' lignite deposit is located in Western Poland, in Lubuskie voivodeship, on the Polish-German border. The study includes analyses results of 20 samples from the Miocene 'Gubin' brown coal deposit, taken from 8 boreholes. INAA method has been used to analyze the content of harmful elements, including: As, Zn, Se, Hg, Th, U, while ASA method has been used for Cd and Pb. Studies have shown that the lignite does not contain elevated concentrations of these elements, apart from As, Th and U in some samples, but they are strictly associated with large ash content within this coal

    Sulphides in hard coal seams from the Orzesze Beds s.s. of Mudstone Series (Westphalian B) in the eastern part of the Upper Silesian Coal Basin

    No full text
    Z uwagi na dynamiczne zmiany klimatyczne, które częściowo spowodowane są użytkowaniem węgla, ważne jest badanie zawartości substancji szkodliwych. Niebezpieczne zanieczyszczenia powietrza, powstające podczas spalania węgla (np, As, Se, Hg, Pb, Sb), są często związane z minerałami siarczkowymi w węglu. Przedmiotem badań były siarczki, które występują w polskim węglu kamiennym. Siarczki są jedną z form występowania siarki w węglu. Przeprowadzona praca skupiła się głównie na charakterystyce form występowania siarczków w skali makroskopowej i mikroskopowej, a także analizie chemicznej w mikroobszarze. Badania były prowadzone dla pokładów 301–308 ze wschodniej części Górnośląskiego Zagłębia Węglowego, stratygraficznie zaliczanych do najwyższej części warstw orzeskich s.s. (westfal B). Zostały opróbowane pokłady węgla w wyrobiskach podziemnych kopalń Jan Kanty, Sobieski Jaworzno III , Wesoła i Ziemowit. [...]Due to dynamic climatic changes resulting, among others, from the use of coal, the content of harmful substances in coal is of particular importance. Dangerous air pollution resulting from the burning of coal (e.g. As, Se, Hg, Pb, Sb) is often associated with sulfide minerals in coal. The study focused on the sulphides occurring in Polish hard coal deposits. Sulfides are one of the forms of occurrence of sulfur in coal. In this paper, an emphasis has been placed on the characteristics of forms of occurrence of sulphides on both macroscopic and microscopic scale and on the chemical analysis in the micro area. The study has been conducted for the No. 301–308 seams from the eastern part of the Upper Silesian Coal Basin, stratigraphically belonging to the highest part of the Orzesze Beds s.s. (Westphalian B). The coal samples have been collected from the coal seams in the underground excavations of the following coal mines: Jan Kanty, Sobieski Jaworzno III , Wesoła and Ziemowit hard coal mine. [...

    Formy występowania i skład chemiczny siarczków w pokładach węgla kamiennego LW Bogdanka w Lubelskim Zagłębiu Węglowym

    No full text
    The Bogdanka coal mine, the only currently operating mine in the Lublin Coal Basin (LCB), extracts coal from the Upper Carboniferous formations of the LCB. The average sulfur content in the No. 385/2 seam is 0.98%, while in the case of the No. 391 seam it is slightly higher and amounts to 1.15%. The iron sulfides (pyrite and marcasite) in bituminous coal seams form macroscopically visible massive, vein, and dispersed forms. A microscopic examination has confirmed their complex structure. Massive forms contain euhedral crystals and framboids. The sulfide aggregations are often associated with a halo of dispersed veins and framboids. Pyrite and marcasite often fill the fusinite cells. Framboids are highly variable when it comes to their size and the degree of compaction within the carbonaceous matter. Their large aggregations form polyframboids. The cracks are often filled with crystalline accumulations of iron sulfides (octaedric crystals). The Wavelenth Dispersive Spectrometry (WDS) microanalysis allowed the chemical composition of sulfides in coal samples from the examined depoists to be analyzed. It has been shown that they are dominated by iron sulfides FeS2 – pyrite and marcasite. The examined sulfides contain small admixtures of Pb, Hg, Zn, Cu, Ag, Sb, Co, Ni, As, and Cd. When it comes to the examined admixtures, the highest concentration of up to 0.24%, is observed for As. In addition, small amounts of galena, siderite, and barite have also been found in the examined coal samples. The amounts of the critical elements in the examined samples do not allow for their economically justified exploitation. Higher concentrations of these elements can be found in the ashes resulting from the combustion process.Kopalnia Bogdanka jest jedyną obecnie czynną kopalnią na terenie Lubelskiego Zagłębia Węglowego – eksploatuje węgiel kamienny z formacji lubelskiej karbonu górnego. Średnia zawartość siarki dla pokładu 385/2 wynosi 0,98%, a dla pokładu 391 jest nieco wyższa i wynosi 1,15%. Siarczki żelaza (piryt i markasyt) w pokładach węgla kamiennego tworzą widoczne makroskopowo formy masywne, żyłowe i rozproszone. Pod mikroskopem widoczna jest złożoność budowy tych wystąpień. Formy masywne zawierają euhedralne kryształy bądź framboidy. Nagromadzenia tych siarczków często połączone są z aureolą rozproszonych żył i framboidów. Piryt i markasyt często wypełniają komórki w fuzynicie. Framboidy wykazują duże zróżnicowanie wielkości i stopnia zagęszczenia w obrębie substancji węglowej. W przypadku dużego zagęszczenia tworzą się poliframboidy. W szczelinach często występują krystaliczne nagromadzenia siarczków żelaza (oktaedryczne kryształy). Analiza Wavelenth Disspersive Spectrometry (WDS) w mikroobszarze pozwoliła na zbadanie składu chemicznego siarczków w próbkach węgla z badanych pokładów. Potwierdzono, że badane wystąpienia są zdominowane przez siarczki żelaza FeS2 – piryt i markasyt. W ich obrębie można zaobserwować niewielkie domieszki Pb, Hg, Zn, Cu, Ag, Sb, Co, Ni, As i Cd. Największą koncentrację wśród domieszek ma As dochodzącą do 0,24% w analizowanych punktach. W badanych próbkach węgla znaleziono również niewielkie ilości galeny, syderytu i barytu. Ilości pierwiastków krytycznych stwierdzone w badanych próbkach nie pozwalają na ich ekonomicznie uzasadnione pozyskiwanie. Większe stężenia tych pierwiastków można znaleźć w popiołach powstałych w wyniku procesu spalania węgla
    corecore