400 research outputs found

    The downsides of cognitive enhancement

    Get PDF
    Action Contro

    Learn Piano with BACh: An Adaptive Learning Interface that Adjusts Task Difficulty based on Brain State

    Get PDF
    We present Brain Automated Chorales (BACh), an adaptive brain-computer system that dynamically increases the levels of difficulty in a musical learning task based on pianists\u27 cognitive workload measured by functional near-infrared spectroscopy. As users\u27 cognitive workload fell below a certain threshold, suggesting that they had mastered the material and could handle more cognitive information, BACh automatically increased the difficulty of the learning task. We found that learners played with significantly increased accuracy and speed in the brain-based adaptive task compared to our control condition. Participant feedback indicated that they felt they learned better with BACh and they liked the timings of the level changes. The underlying premise of BACh can be applied to learning situations where a task can be broken down into increasing levels of difficulty

    Response Monitoring in De Novo Patients with Parkinson's Disease

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is accompanied by dysfunctions in a variety of cognitive processes. One of these is error processing, which depends upon phasic decreases of medial prefrontal dopaminergic activity. Until now, there is no study evaluating these processes in newly diagnosed, untreated patients with PD ("de novo PD"). METHODOLOGY/PRINCIPAL FINDINGS: Here we report large changes in performance monitoring processes using event-related potentials (ERPs) in de novo PD-patients. The results suggest that increases in medial frontal dopaminergic activity after an error (Ne) are decreased, relative to age-matched controls. In contrast, neurophysiological processes reflecting general motor response monitoring (Nc) are enhanced in de novo patients. CONCLUSIONS/SIGNIFICANCE: It may be hypothesized that the Nc-increase is at costs of dopaminergic activity after an error; on a functional level errors may not always be detected and correct responses sometimes be misinterpreted as errors. This pattern differs from studies examining patients with a longer history of PD and may reflect compensatory processes, frequently occurring in pre-manifest stages of PD. From a clinical point of view the clearly attenuated Ne in the de novo PD patients may prove a useful additional tool for the early diagnosis of basal ganglia dysfunction in PD

    Gamma-Aminobutyric Acid and Glutamate Concentrations in the Striatum and Anterior Cingulate Cortex Not Found to Be Associated with Cognitive Flexibility

    Full text link
    Behavioral flexibility and goal-directed behavior heavily depend on fronto-striatal networks. Within these circuits, gamma-aminobutyric acid (GABA) and glutamate play an important role in (motor) response inhibition, but it has remained largely unclear whether they are also relevant for cognitive inhibition. We hence investigated the functional role of these transmitters for cognitive inhibition during cognitive flexibility. Healthy young adults performed two paradigms assessing different aspects of cognitive flexibility. Magnetic resonance spectroscopy (MRS) was used to quantify GABA+ and total glutamate/glutamine (Glx) levels in the striatum and anterior cingulate cortex (ACC) referenced to N-acetylaspartate (NAA). We observed typical task switching and backward inhibition effects, but striatal and ACC concentrations of GABA+/NAA and Glx/NAA were not associated with cognitive flexibility in a functionally relevant manner. The assumption of null effects was underpinned by Bayesian testing. These findings suggest that behavioral and cognitive inhibition are functionally distinct faculties, that depend on (at least partly) different brain structures and neurotransmitter systems. While previous studies consistently demonstrated that motor response inhibition is modulated by ACC and striatal GABA levels, our results suggest that the functionally distinct cognitive inhibition required for successful switching is not, or at least to a much lesser degree, modulated by these factors

    Ab Initio Screening Approach for the Discovery of Lignin Polymer Breaking Pathways

    Get PDF
    The directed depolymerization of lignin biopolymers is of utmost relevance for the valorization or commercialization of biomass fuels. We present a computational and theoretical screening approach to identify potential cleavage pathways and resulting fragments that are formed during depolymerization of lignin oligomers containing two to six monomers. We have developed a chemical discovery technique to identify the chemically relevant putative fragments in eight known polymeric linkage types of lignin. Obtaining these structures is a crucial precursor to the development of any further kinetic modeling. We have developed this approach by adapting steered molecular dynamics calculations under constant force and varying the points of applied force in the molecule to diversify the screening approach. Key observations include relationships between abundance and breaking frequency, the relative diversity of potential pathways for a given linkage, and the observation that readily cleaved bonds can destabilize adjacent bonds, causing subsequent automatic cleavage.Massachusetts Institute of Technology (Research Support Corporation, Reed Grant)United States. Dept. of Energy. Computational Science Graduate Fellowship Program (DOE-CSGF)Burroughs Wellcome Fund (Career Award at the Scientific Interface

    The functional connectome of 3,4‐methyldioxymethamphetamine‐related declarative memory impairments

    Full text link
    The chronic intake of 3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) bears a strong risk for sustained declarative memory impairments. Although such memory deficits have been repeatedly reported, their neurofunctional origin remains elusive. Therefore, we here investigate the neuronal basis of altered declarative memory in recurrent MDMA users at the level of brain connectivity. We examined a group of 44 chronic MDMA users and 41 demographically matched controls. Declarative memory performance was assessed by the Rey Auditory Verbal Learning Test and a visual associative learning test. To uncover alterations in the whole brain connectome between groups, we employed a data‐driven multi‐voxel pattern analysis (MVPA) approach on participants' resting‐state functional magnetic resonance imaging data. Recent MDMA use was confirmed by hair analyses. MDMA users showed lower performance in delayed recall across tasks compared to well‐matched controls with moderate‐to‐strong effect sizes. MVPA revealed a large cluster located in the left postcentral gyrus of global connectivity differences between groups. Post hoc seed‐based connectivity analyses with this cluster unraveled hypoconnectivity to temporal areas belonging to the auditory network and hyperconnectivity to dorsal parietal regions belonging to the dorsal attention network in MDMA users. Seed‐based connectivity strength was associated with verbal memory performance in the whole sample as well as with MDMA intake patterns in the user group. Our findings suggest that functional underpinnings of MDMA‐related memory impairments encompass altered patterns of multimodal sensory integration within auditory processing regions to a functional heteromodal connector hub, the left postcentral gyrus. In addition, hyperconnectivity in regions of a cognitive control network might indicate compensation for degraded sensory processing
    • …
    corecore