73 research outputs found

    Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II).

    Get PDF
    The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH2CMe2 (a), the bidentate N-(2-aminoethyl)aziridines C2H4NC2H4NH2 (b) or CH2CMe2NCH2CMe2NH2 (c) as well as the unsaturated azirine NCH2CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [ÎŒ-Cl(C6H4CHMeNMe2-C,N)Pd]2 with ligand a yielded compound [Cl(NHCH2CMe2)(C6H4CHMe2NMe2-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl2Pd(HNC2H4)2] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C2H4NC2H4NH2-N,Nâ€Č)2Pd](OTf)2 (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines (“aziridine dimerization”). CuCl2 reacted in pure HNC2H4 or HNCH2CMe2 (b) again by “dimerization” to give the tris-chelated ionic complex [Cu(C2H4NC2H4NH2-N,Nâ€Č)3]Cl2 (3b) or the bis-chelated complex [CuCl(C2H2Me2NC2H2Me2NH2-N,Nâ€Č)2]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl2, trans-[Cl2Pd(NCH2CPh)2] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5–300.0 ÎŒg mL−1. However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 ÎŒg mL−1. The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria. Graphical abstract: Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(ii) and palladium(ii

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Potassium channel activation and relaxation by nicorandil in rat small mesenteric arteries

    No full text
    1. We used whole-cell patch clamp to investigate the currents activated by nicorandil in smooth muscle cells isolated from rat small mesenteric arteries, and studied the relaxant effect of nicorandil using myography. 2. Nicorandil (300 ΌM) activated currents with near-linear current-voltage relationships and reversal potentials near to the equilibrium potential for K(+). 3. The nicorandil-activated current was blocked by glibenclamide (10 ΌM), but unaffected by iberiotoxin (100 nM) and the guanylyl cyclase inhibitor LY 83583 (1 ΌM). During current activation by nicorandil, openings of channels with a unitary conductance of 31 pS were detected. 4. One hundred ÎŒM nicorandil had no effect on currents through Ca(2+) channels recorded in response to depolarizing voltage steps using 10 mM Ba(2+) as a charge carrier. A small reduction in current amplitude was seen in 300 ΌM nicorandil, though this was not statistically significant. 5. In arterial rings contracted with 20 mM K(+) Krebs solution containing 200 nM BAYK 8644, nicorandil produced a concentration-dependent relaxation with mean pD(2)=4.77±0.06. Glibenclamide (10 ΌM) shifted the curve to the right (pD(2)=4.32±0.05), as did 60 mM K(+). LY 83583 caused a dose-dependent inhibition of the relaxant effect of nicorandil, while LY 83583 and glibenclamide together produced greater inhibition than either alone. 6. Metabolic inhibition with carbonyl cyanide m-chlorophenyl hydrazone (30 nM), or by reduction of extracellular glucose to 0.5 mM, increased the potency of nicorandil. 7. We conclude that nicorandil activates K(ATP) channels in these vessels and also acts through guanylyl cyclase to cause vasorelaxation, and that the potency of nicorandil is increased during metabolic inhibition
    • 

    corecore