1,058 research outputs found
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals can be determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations
Dutch and German 3-year-olds’ representations of voicing alternations
The voicing contrast is neutralised syllable and word finally in Dutch and German, leading to alternations within the morphological paradigm (e.g. Dutch ‘bed(s)’, be[t] be[d]en, German ‘dog(s)’, Hun[t]-Hun[d]e). Despite structural similarity, language-specific morphological, phonological and lexical properties impact on the distribution of this alternation in the two languages. Previous acquisition research has focused on one language only, predominantly focusing on children’s production accuracy, concluding that alternations are not acquired until late in the acquisition process in either language. This paper adapts a perceptual method to investigate how voicing alternations are represented in the mental lexicon of Dutch and German 3-year-olds. Sensitivity to mispronunciations of voicing word-medially in plural forms was measured using a visual fixation procedure. Dutch children exhibited evidence of overgeneralising the voicing alternation, whereas German children consistently preferred the correct pronunciation to mispronunciations. Results indicate that the acquisition of voicing alternations is influenced by language-specific factors beyond the alternation itself
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2
The Effect of Aqueous Ammonia Soaking Pretreatment on Methane Generation Using Different Lignocellulosic Biomasses
Antimicrobial functionalized genetically engineered spider silk
Genetically engineered fusion proteins offer potential as multifunctional biomaterials for medical use.
Fusion or chimeric proteins can be formed using recombinant DNA technology by combining nucleotide
sequences encoding different peptides or proteins that are otherwise not found together in nature. In the
present study, three new fusion proteins were designed, cloned and expressed and assessed for function,
by combining the consensus sequence of dragline spider silk with three different antimicrobial peptides.
The human antimicrobial peptides human neutrophil defensin 2 (HNP-2), human neutrophil defensins 4
(HNP-4) and hepcidin were fused to spider silk through bioengineering. The spider silk domain maintained
its self-assembly features, a key aspect of these new polymeric protein biomaterials, allowing the
formation of b-sheets to lock in structures via physical interactions without the need for chemical crosslinking.
These new functional silk proteins were assessed for antimicrobial activity against Gram e
Escherichia coli and Gram þ Staphylococcus aureus and microbicidal activity was demonstrated. Dynamic
light scattering was used to assess protein aggregation to clarify the antimicrobial patterns observed.
Attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and circular dichroism
(CD) were used to assess the secondary structure of the new recombinant proteins. In vitro cell studies
with a human osteosarcoma cell line (SaOs-2) demonstrated the compatibility of these new proteins
with mammalian cells.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa de doutoramento (SFRH/BD/28603/2006); Chimera project (PTDC/EBB-EBI/109093/2008); NIH and Tissue Engineering Resource Center EB003210, P41
EB002520, DE017207
Shape from Projections via Differentiable Forward Projector for Computed Tomography
In computed tomography, the reconstruction is typically obtained on a voxel
grid. In this work, however, we propose a mesh-based reconstruction method. For
tomographic problems, 3D meshes have mostly been studied to simulate data
acquisition, but not for reconstruction, for which a 3D mesh means the inverse
process of estimating shapes from projections. In this paper, we propose a
differentiable forward model for 3D meshes that bridge the gap between the
forward model for 3D surfaces and optimization. We view the forward projection
as a rendering process, and make it differentiable by extending recent work in
differentiable rendering. We use the proposed forward model to reconstruct 3D
shapes directly from projections. Experimental results for single-object
problems show that the proposed method outperforms traditional voxel-based
methods on noisy simulated data. We also apply the proposed method on electron
tomography images of nanoparticles to demonstrate the applicability of the
method on real data
- …
