26,415 research outputs found

    Collision Times in Multicolor Urn Models and Sequential Graph Coloring With Applications to Discrete Logarithms

    Get PDF
    Consider an urn model where at each step one of qq colors is sampled according to some probability distribution and a ball of that color is placed in an urn. The distribution of assigning balls to urns may depend on the color of the ball. Collisions occur when a ball is placed in an urn which already contains a ball of different color. Equivalently, this can be viewed as sequentially coloring a complete qq-partite graph wherein a collision corresponds to the appearance of a monochromatic edge. Using a Poisson embedding technique, the limiting distribution of the first collision time is determined and the possible limits are explicitly described. Joint distribution of successive collision times and multi-fold collision times are also derived. The results can be used to obtain the limiting distributions of running times in various birthday problem based algorithms for solving the discrete logarithm problem, generalizing previous results which only consider expected running times. Asymptotic distributions of the time of appearance of a monochromatic edge are also obtained for other graphs.Comment: Minor revision. 35 pages, 2 figures. To appear in Annals of Applied Probabilit
    corecore