16 research outputs found
Simulation of high-velocity compaction process with relaxation assists using the discrete element method
The discrete element method is used to investigate the high-velocity compaction process with additional piston supports known as relaxation assists. It is shown that by incorporating the relaxation assists in the piston-die assembly, particles can be better locked during the compaction process. The simulation results reveal that relaxation assists offer; smooth compaction during loading stage, prevention of the particle separation during unloading stage and conversion of higher kinetic energy of hammer into particle deformation. Finally, the influences of various loading elements on compaction process and effects of presence of adhesion during unloading stage are investigated. The results support the findings of experimental work.</p
Evaporative loss kinetics of di(2-ethylhexyl)phthalate (DEHP) from pristine DEHP and plasticized PVC
A new method for assessing the efficiency of stabilizers in polyolefins exposed to chlorinated water media
Dielectric properties of alumina-filled poly (ethylene-co-butyl acrylate) nanocomposites Part I - dry studies
The dielectric properties of poly (ethylene-co-butyl acrylate) with 13 wt% of butyl acrylate (EBA) filled with alumina nanoparticles were studied as a function of particle size, particle coating, filler content (2, 6 or 12wt%) and temperature. The particles were either unmodified or surface-treated with either aminopropyltriethoxy silane or octyltriethoxy silane. The complex permittivity was measured with frequencies varying between 1 mHz and up to 1 kHz at different temperatures (25, 45 and 65 degrees C). Measurements were performed in dry conditions. From the dielectric spectroscopy measurements it can be seen that the tan delta for the dry samples is almost independent of the type of the particle coating used. It does, however, depend on the particle size, filler content and temperature.</p
Deterioration of polyethylene pipes exposed to water containing chlorine dioxide
Chlorine species used as disinfectants in tap water have a deteriorating effect on many materials including polyethylene. There are only very few scientific reports on the effect on polyethylene pipes of water containing chlorine dioxide. Medium-density polyethylene pipes stabilized with hindered phenol and phosphite antioxidants were pressure tested with water containing 4 ppm chlorine dioxide at 90 degrees C and pH = 6.8 as internal medium. The stabilizers were rapidly consumed towards the inner pipe wall; the rate of consumption was four times greater than in chlorinated water (4 ppm, pH = 6.8) at the same temperature. The depletion of stabilizer occurred far into the pipe wall. A supplementary study on a polymer analogue (squalane) containing the same stabilizer package showed that the consumption of the phenolic antioxidant was 2.5 times faster when exposed water containing chlorine dioxide than on exposure to chlorinated water. The subsequent polymer degradation was an immediate surface reaction. It was confirmed by differential scanning calorimetry, infrared spectroscopy and size exclusion chromatography that in the surface layer which came into contact with the oxidising medium, the amorphous component of the polymer was heavily oxidized leaving a highly crystalline powder with many carboxylic acid chain ends in extended and once-folded chains. Scanning electron microscopy showed that propagation of cracks through the pipe wall was assisted by polymer degradation.</p
Dielectric properties of alumina-filled poly(ethylene-co-butyl acrylate) nanocomposites
The dielectric properties of poly (ethylene-co-butyl acrylate) with 13 wt% of butyl acrylate (EBA) filled with alumina nanoparticles (diameter < 50 nm) were studied as a function of particle coating and filler content (2, 6 and 12 wt%). The particles were either unmodified or surface treated either with aminopropyl triethoxysilane or octyltriethoxysilane. The complex permittivity was measured with an IDA200 dielectric spectroscopy analyzer at applied voltage of 200 Vpeak with frequencies varying between 1 mHz and up to 1 kHz at different temperatures (25, 45 and 65°C). Measurements are performed in dry conditions. Pure EBA shows two regions of frequency dispersion in the complex permittivity: a broad relaxation peak in the order of MHz and a characteristic low frequency dispersion that likely is a Maxwell-Wagner response due to a barrier blocking conduction process. Obtained data fits well to a sum of two Havriliak-Negami expressions. Adding nanoparticles to the EBA matrix changes the low frequency dispersion behaviour significantly. Differences in dielectric losses between nanocomposites with different surface treatment seem to be small. The differences in dielectric constant, however, are more pronounced and seem to indicate better dispersion with octylthriethoxysilane surface treatment.</p
Dielectric properties of alumina-filled poly (ethylene-co-butyl acrylate) nanocomposites Part II- wet studies
The influence of moisture on the dielectric properties of different types of poly (ethylene-co-butyl acrylate) filled with alumina nanoparticles was systematically investigated by varying the type of aluminum oxide, particle surface treatment and filler content (2, 6 and 12 wt%). The nanoparticles were either unmodified or surface-treated with either aminopropyl triethoxysilane or octyltriethoxy silane. The complex permittivity was measured with an IDA200 dielectric spectroscopy analyzer at applied voltage of 200 V-peak with frequencies varying between 1 mHz and 1 kHz. The measurements were performed at 25 degrees C and relative air humidities of 24, 54 and 86 %. In order to expand the frequency range the HP 4284A precision LCR meter was used for measuring sample impedance at the frequency range of 100 Hz to 1 MHz. From the frequency dependence of dielectric losses it can be seen that absorbed water plays a significant role in determining the dielectric properties of the nanocomposites. The magnitude of tan delta seems to be determined primarily by the particle size and filler content, while the peak frequency is mostly influenced by the amount of absorbed water and the type of particle coating.</p
