1,873 research outputs found

    Balanced Allocations: A Simple Proof for the Heavily Loaded Case

    Full text link
    We provide a relatively simple proof that the expected gap between the maximum load and the average load in the two choice process is bounded by (1+o(1))loglogn(1+o(1))\log \log n, irrespective of the number of balls thrown. The theorem was first proven by Berenbrink et al. Their proof uses heavy machinery from Markov-Chain theory and some of the calculations are done using computers. In this manuscript we provide a significantly simpler proof that is not aided by computers and is self contained. The simplification comes at a cost of weaker bounds on the low order terms and a weaker tail bound for the probability of deviating from the expectation

    Comparative study of bolometric and non-bolometric switching elements for microwave phase shifters

    Get PDF
    The performance of semiconductor and high critical temperature superconductor switches is compared as they are used in delay-line-type microwave and millimeter-wave phase shifters. Such factors as their ratios of the off-to-on resistances, parasitic reactances, power consumption, speed, input-to-output isolation, ease of fabrication, and physical dimensions are compared. Owing to their almost infinite off-to-on resistance ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite suitable for use in microwave phase shifters; their only drawbacks are their speed and size. The SUPERFET, a novel device whose operation is based on the electric field effect in high critical temperature ceramic superconductors is also discussed. Preliminary results indicate that the SUPERFET is fast and that it can be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect transistors

    EVALUATION OF THE ANTIOXIDANT ACTIVITY OF THE FLAVONOIDS ISOLATED FROM HELIOTROPIUM SINUATUM RESIN USING ORACFL, DPPH AND ESR METHODOLOGIES

    Get PDF
    Indexación: Web of Science; Scielo.The antioxidant capacity has been determined for a number of flavonoid compounds from Heliotropium sinuatum, a plant that grows in arid areas in the north of Chile. The methodologies used were: ORAC(FL) (oxygen radical absorbance capacity - fluorescein), DPPH (2,2-diphenyl-2-picrylhydrazyl) bleaching and electron spin resonance (ESR). These compounds were studied in homogeneous and heterogeneous media. The results showed that the 7-o-methyleriodictiol and 3-o-methylisorhamnetin are those with the highest antioxidant capacity.http://ref.scielo.org/m82cz

    Enhanced and continuous electrostatic carrier doping on the SrTiO3_{3} surface

    Get PDF
    Paraelectrical tuning of a charge carrier density as high as 1013^{13}\,cm2^{-2} in the presence of a high electronic carrier mobility on the delicate surfaces of correlated oxides, is a key to the technological breakthrough of a field effect transistor (FET) utilising the metal-nonmetal transition. Here we introduce the Parylene-C/Ta2_{2}O5_{5} hybrid gate insulator and fabricate FET devices on single-crystalline SrTiO3_{3}, which has been regarded as a bedrock material for oxide electronics. The gate insulator accumulates up to 1013\sim10^{13}cm2^{-2} carriers, while the field-effect mobility is kept at 10\,cm2^2/Vs even at room temperature. Further to the exceptional performance of our devices, the enhanced compatibility of high carrier density and high mobility revealed the mechanism for the long standing puzzle of the distribution of electrostatically doped carriers on the surface of SrTiO3_{3}. Namely, the formation and continuous evolution of field domains and current filaments.Comment: Supplementary Information: <http://www.nature.com/srep/2013/130424/srep01721/extref/srep01721-s1.pdf

    Balanced Allocation on Graphs: A Random Walk Approach

    Full text link
    In this paper we propose algorithms for allocating nn sequential balls into nn bins that are interconnected as a dd-regular nn-vertex graph GG, where d3d\ge3 can be any integer.Let ll be a given positive integer. In each round tt, 1tn1\le t\le n, ball tt picks a node of GG uniformly at random and performs a non-backtracking random walk of length ll from the chosen node.Then it allocates itself on one of the visited nodes with minimum load (ties are broken uniformly at random). Suppose that GG has a sufficiently large girth and d=ω(logn)d=\omega(\log n). Then we establish an upper bound for the maximum number of balls at any bin after allocating nn balls by the algorithm, called {\it maximum load}, in terms of ll with high probability. We also show that the upper bound is at most an O(loglogn)O(\log\log n) factor above the lower bound that is proved for the algorithm. In particular, we show that if we set l=(logn)1+ϵ2l=\lfloor(\log n)^{\frac{1+\epsilon}{2}}\rfloor, for every constant ϵ(0,1)\epsilon\in (0, 1), and GG has girth at least ω(l)\omega(l), then the maximum load attained by the algorithm is bounded by O(1/ϵ)O(1/\epsilon) with high probability.Finally, we slightly modify the algorithm to have similar results for balanced allocation on dd-regular graph with d[3,O(logn)]d\in[3, O(\log n)] and sufficiently large girth

    A Supercooled Spin Liquid State in the Frustrated Pyrochlore Dy2Ti2O7

    Full text link
    A "supercooled" liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic state at low temperatures has proven very difficult to identify unambiguously. Here we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain a fundamentally new understanding of the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We demonstrate a virtually universal HN form for the magnetic susceptibility, a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with precisely the VTF trajectory. Low temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled magnetic liquid; the consequent implication is that this translationally invariant lattice of strongly correlated spins is evolving towards an unprecedented magnetic glass state, perhaps due to many-body localization of spin.Comment: Version 2 updates: added legend for data in Figures 4A and 4B; corrected equation reference in caption for Figure 4

    On the Growth of Al_2 O_3 Scales

    Get PDF
    Understanding the growth of Al2O3 scales requires knowledge of the details of the chemical reactions at the scale–gas and scale–metal interfaces, which in turn requires specifying how the creation/annihilation of O and Al vacancies occurs at these interfaces. The availability of the necessary electrons and holes to allow for such creation/annihilation is a crucial aspect of the scaling reaction. The electronic band structure of polycrystalline Al2O3 thus plays a decisive role in scale formation and is considered in detail, including the implications of a density functional theory (DFT) calculation of the band structure of a Σ7 View the MathML source bicrystal boundary, for which the atomic structure of the boundary was known from an independent DFT energy-minimization calculation and comparisons with an atomic-resolution transmission electron micrograph of the same boundary. DFT calculations of the formation energy of O and Al vacancies in bulk Al2O3 in various charge states as a function of the Fermi energy suggested that electronic conduction in Al2O3 scales most likely involves excitation of both electrons and holes, which are localized on singly charged O vacancies, View the MathML source and doubly charged Al vacancies, View the MathML source, respectively. We also consider the variation of the Fermi level across the scale and bending (“tilting”) of the conduction band minimum and valence band maximum due to the electric field developed during the scaling reaction. The band structure calculations suggest a new mechanism for the “reactive element” effect—a consequence of segregation of Y, Hf, etc., to grain boundaries in Al2O3 scales, which results in improved oxidation resistance—namely, that the effect is due to the modification of the near-band edge grain-boundary defect states rather than any blocking of diffusion pathways, as previously postulated. Secondly, Al2O3 scale formation is dominated by grain boundary as opposed to lattice diffusion, and there is unambiguous evidence for both O and Al countercurrent transport in Al2O3 scale-forming alloys. We postulate that such transport is mediated by migration of grain boundary disconnections containing charged jogs, rather than by jumping of isolated point defects in random high-angle grain boundaries

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Total and acylated ghrelin levels in children and adolescents with idiopathic short stature and poor appetite

    Get PDF
    Context. Ghrelin is a hormone secreted primarily from stomach that can affect growth by its somatotropic and orexigenic activities. Objective. The aim of this study was to investigate the relationship of ghrelin and growth in children and adolescents with idiopathic short stature. Subjects and Methods. After thorough clinical examination, 56 subjects including 31 with normal weight and height and 25 with short stature were evaluated for fasting total (TG) and acylated (active) ghrelin (AG) levels. All the parameters of growth including growth hormone and IGF-1 levels, bone age and body mass index were also investigated. Appetite was also assessed and all the studied subjects were also divided into two groups, poor or good appetite. Results. TG and AG levels were not significantly different in the two groups. There was not any significant correlation between ghrelin and parameters of growth. On the other hand, TG concentration was significantly higher in subjects with poor appetite, but AG was not significantly different. Conclusions. The results of this study show that ghrelin is not significantly altered in idiopathic short stature. Although TG is increased in children with poor appetite its acylation is not increased concomitantly. © 2015, Editura Academiei Romane. All rights reserved
    corecore