628 research outputs found

    Large coupling behaviour of the Lyapunov exponent for tight binding one-dimensional random systems

    Get PDF
    Studies the Lyapunov exponent gamma lambda (E) of (hu)(n)=u(n+1)+u(n-1)+ lambda V(n)u(n) in the limit as lambda to infinity where V is a suitable random potential. The authors prove that gamma lambda (E) approximately ln lambda as lambda to infinity uniformly as E/ lambda runs through compact sets. They also describe a formal expansion (to order lambda -2) for random and almost periodic potentials

    On the spectrum and Lyapunov exponent of limit periodic Schrodinger operators

    Full text link
    We exhibit a dense set of limit periodic potentials for which the corresponding one-dimensional Schr\"odinger operator has a positive Lyapunov exponent for all energies and a spectrum of zero Lebesgue measure. No example with those properties was previously known, even in the larger class of ergodic potentials. We also conclude that the generic limit periodic potential has a spectrum of zero Lebesgue measure.Comment: 12 pages. To appear in Communications in Mathematical Physic

    Scattering Theory of Dynamic Electrical Transport

    Full text link
    We have developed a scattering matrix approach to coherent transport through an adiabatically driven conductor based on photon-assisted processes. To describe the energy exchange with the pumping fields we expand the Floquet scattering matrix up to linear order in driving frequency.Comment: Proceedings QMath9, September 12th-16th, 2004, Giens, Franc

    Hofstadter butterfly as Quantum phase diagram

    Full text link
    The Hofstadter butterfly is viewed as a quantum phase diagram with infinitely many phases, labelled by their (integer) Hall conductance, and a fractal structure. We describe various properties of this phase diagram: We establish Gibbs phase rules; count the number of components of each phase, and characterize the set of multiple phase coexistence.Comment: 4 prl pages 1 colored figure typos corrected, reference [26] added, "Ten Martini" assumption adde

    Charge Deficiency, Charge Transport and Comparison of Dimensions

    Get PDF
    We study the relative index of two orthogonal infinite dimensional projections which, in the finite dimensional case, is the difference in their dimensions. We relate the relative index to the Fredholm index of appropriate operators, discuss its basic properties, and obtain various formulas for it. We apply the relative index to counting the change in the number of electrons below the Fermi energy of certain quantum systems and interpret it as the charge deficiency. We study the relation of the charge deficiency with the notion of adiabatic charge transport that arises from the consideration of the adiabatic curvature. It is shown that, under a certain covariance, (homogeneity), condition the two are related. The relative index is related to Bellissard's theory of the Integer Hall effect. For Landau Hamiltonians the relative index is computed explicitly for all Landau levels.Comment: 23 pages, no figure

    On the Lipschitz continuity of spectral bands of Harper-like and magnetic Schroedinger operators

    Full text link
    We show for a large class of discrete Harper-like and continuous magnetic Schrodinger operators that their band edges are Lipschitz continuous with respect to the intensity of the external constant magnetic field. We generalize a result obtained by J. Bellissard in 1994, and give examples in favor of a recent conjecture of G. Nenciu.Comment: 15 pages, accepted for publication in Annales Henri Poincar

    On the regularity of the Hausdorff distance between spectra of perturbed magnetic Hamiltonians

    Full text link
    We study the regularity properties of the Hausdorff distance between spectra of continuous Harper-like operators. As a special case we obtain H\"{o}lder continuity of this Hausdorff distance with respect to the intensity of the magnetic field for a large class of magnetic elliptic (pseudo)differential operators with long range magnetic fields.Comment: to appear in the Proceedings of the 'Spectral Days' conference, Santiago de Chile 201

    Quantum Transport in Molecular Rings and Chains

    Full text link
    We study charge transport driven by deformations in molecular rings and chains. Level crossings and the associated Longuet-Higgins phase play a central role in this theory. In molecular rings a vanishing cycle of shears pinching a gap closure leads, generically, to diverging charge transport around the ring. We call such behavior homeopathic. In an infinite chain such a cycle leads to integral charge transport which is independent of the strength of deformation. In the Jahn-Teller model of a planar molecular ring there is a distinguished cycle in the space of uniform shears which keeps the molecule in its manifold of ground states and pinches level crossing. The charge transport in this cycle gives information on the derivative of the hopping amplitudes.Comment: Final version. 26 pages, 8 fig
    corecore