1,156 research outputs found

    Continuum Theory of Edge States of Topological Insulators: Variational Principle and Boundary Conditions

    Full text link
    We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us derive natural boundary conditions valid for such systems. Our formulation is particularly suited to develop a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modeled by the Bernevig-Hughes-Zhang (BHZ) hamiltonian, we show that the continuum theory with the natural boundary condition provides an appropriate description of the low energy physics. As a spin-off, we find that in a certain parameter regime, the gap that arises in topological insulator ribbons of finite width due to the hybridization of edges states from opposite edges, depends non-monotonically on the ribbon width and can nearly vanish at certain "magic widths".Comment: 8 pages, 5 figure

    Fermionic Superfluid from a Bilayer Band Insulator in an Optical Lattice

    Full text link
    We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling problem. Our proposal exploits the idea of tuning the interaction in a characteristically low entropy state, a band-insulator in an optical bilayer system, to obtain a superfluid. By performing a detailed analysis of the model including fluctuations and augmented by a variational quantum Monte Carlo calculations of the ground state, we show that the superfluid state obtained has high transition temperature of the order of the hopping energy. Our system is designed to suppress other competing orders such as a charge density wave. We suggest a laboratory realization of this model via an orthogonally shaken optical lattice bilayer.Comment: 5 pages, 7 figures, typos fixed, figures modifie

    The Lov\'asz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks

    Full text link
    The Jaccard index, also referred to as the intersection-over-union score, is commonly employed in the evaluation of image segmentation results given its perceptual qualities, scale invariance - which lends appropriate relevance to small objects, and appropriate counting of false negatives, in comparison to per-pixel losses. We present a method for direct optimization of the mean intersection-over-union loss in neural networks, in the context of semantic image segmentation, based on the convex Lov\'asz extension of submodular losses. The loss is shown to perform better with respect to the Jaccard index measure than the traditionally used cross-entropy loss. We show quantitative and qualitative differences between optimizing the Jaccard index per image versus optimizing the Jaccard index taken over an entire dataset. We evaluate the impact of our method in a semantic segmentation pipeline and show substantially improved intersection-over-union segmentation scores on the Pascal VOC and Cityscapes datasets using state-of-the-art deep learning segmentation architectures.Comment: Accepted as a conference paper at CVPR 201

    Synchronous and Asynchronous Mott Transitions in Topological Insulator Ribbons

    Full text link
    We address how the nature of linearly dispersing edge states of two dimensional (2D) topological insulators evolves with increasing electron-electron correlation engendered by a Hubbard like on-site repulsion UU in finite ribbons of two models of topological band insulators. Using an inhomogeneous cluster slave rotor mean-field method developed here, we show that electronic correlations drive the topologically nontrivial phase into a Mott insulating phase via two different routes. In a synchronous transition, the entire ribbon attains a Mott insulating state at one critical UU that depends weakly on the width of the ribbon. In the second, asynchronous route, Mott localization first occurs on the edge layers at a smaller critical value of electronic interaction which then propagates into the bulk as UU is further increased until all layers of the ribbon become Mott localized. We show that the kind of Mott transition that takes place is determined by certain properties of the linearly dispersing edge states which characterize the topological resilience to Mott localization.Comment: 4+ pages, 5 figure

    Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists

    Get PDF
    This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.Comment: 280 page
    corecore