2,942 research outputs found

    Integration of production and financial models to analyse the financial impact of livestock diseases: a case study of Schmallenberg virus disease on British and French dairy farms

    Get PDF
    AIMS AND OBJECTIVES: The aim of the study was to investigate and compare the financial impact of Schmallenberg disease for different dairy production types in the United Kingdom and France. MATERIALS AND METHODS: Integrated production and financial models for dairy cattle were developed and applied to Schmallenberg virus (SBV) disease in a British and French context. The five main production systems that prevail in these two countries were considered. Their respective gross margins measuring the holding's profitability were calculated based on public benchmarking, literature and expert opinion data. A partial budget analysis was performed within each production model to estimate the impact of SBV in the systems modelled. Two disease scenarios were simulated: low impact and high impact. RESULTS: The model gross margin obtained per cow space and year ranged from £1014 to £1484 for the UK and from £1037 to £1890 for France depending on the production system considered. In the UK, the net SBV disease costs in £/cow space/year for an average dairy farm with 100 milking spaces were estimated between £16.3 and £51.4 in the high-impact scenario and between £8.2 and £25.9 in the low-impact scenario. For France, the net SBV disease costs in £/cow space/year ranged from £19.6 to £48.6 in the high-impact scenario and £9.7 to £22.8 in the low-impact scenario, respectively. CONCLUSION: The study illustrates how the combination of production and financial models allows assessing disease impact taking into account differing management and husbandry practices and associated price structures in the dairy sector. It supports decision-making of farmers and veterinarians who are considering disease control measures as it provides an approach to estimate baseline disease impact in common dairy production systems in the UK and France

    The use of hybrid cellular automaton models for improving cancer therapy, In Proceedings, Cellular Automata: 6th International Conference on Cellular Automata for Research and Industry, ACRI 2004, Amsterdam, The Netherlands, eds P.M.A. Sloot, B. Chopard, A.G. Hoekstra

    Get PDF
    The Hybrid Cellular Automata (HCA) modelling framework can be an efficient approach to a number of biological problems, particularly those which involve the integration of multiple spatial and temporal scales. As such, HCA may become a key modelling tool in the development of the so-called intergrative biology. In this paper, we first discuss HCA on a general level and then present results obtained when this approach was implemented in cancer research

    A mathematical model of Doxorubicin treatment efficacy on non-Hodgkin’s lymphoma: Investigation of current protocol through theoretical modelling results

    Get PDF
    Doxorubicin treatment outcomes for non-Hodgkin’s lymphomas (NHL) are mathematically modelled and computationally analyzed. The NHL model includes a tumor structure incorporating mature and immature vessels, vascular structural adaptation and NHL cell-cycle kinetics in addition to Doxorubicin pharmacokinetics (PK) and pharmacodynamics (PD). Simulations provide qualitative estimations of the effect of Doxorubicin on high-grade (HG), intermediate-grade (IG) and low-grade (LG) NHL. Simulation results imply that if the interval between successive drug applications is prolonged beyond a certain point, treatment will be inefficient due to effects caused by heterogeneous blood flow in the system
    corecore