2,306 research outputs found

    Measuring Double Parton Distributions in Nucleons at Proton-Nucleus Colliders

    Get PDF
    We predict a strong enhancement of multijet production in proton-nucleus collisions at collider energies, as compared to a naive expectation of a cross section A\propto A. The study of the process would allow to measure, for the first time, the double parton distribution functions in a nucleon in a model independent way and hence to study both the longitudinal and the transverse correlations of partons.Comment: 12 pages, 2 figure

    Conceptual uncertainties in modelling the interaction between engineered and natural barriers of nuclear waste repositories in crystalline rocks

    Get PDF
    Nuclear waste disposal in geological formations relies on a multi-barrier concept that includes engineered components – which, in many cases, include a bentonite buffer surrounding waste packages – and the host rock. Contrasts in materials, together with gradients across the interface between the engineered and natural barriers, lead to complex interactions between these two subsystems. Numerical modelling, combined with monitoring and testing data, can be used to improve our overall understanding of rock–bentonite interactions and to predict the performance of this coupled system. Although established methods exist to examine the prediction uncertainties due to uncertainties in the input parameters, the impact of conceptual model decisions on the quantitative and qualitative modelling results is more difficult to assess. A Swedish Nuclear Fuel and Waste Management Company Task Force project facilitated such an assessment. In this project, 11 teams used different conceptualizations and modelling tools to analyse the Bentonite Rock Interaction Experiment (BRIE) conducted at the Äspö Hard Rock Laboratory in Sweden. The exercise showed that prior system understanding along with the features implemented in the available simulators affect the processes included in the conceptual model. For some of these features, sufficient characterization data are available to obtain defensible results and interpretations, whereas others are less supported. The exercise also helped to identify the conceptual uncertainties that led to different assessments of the relative importance of the engineered and natural barrier subsystems. The range of predicted bentonite wetting times encompassed by the ensemble results were considerably larger than the ranges derived from individual models. This is a consequence of conceptual uncertainties, demonstrating the relevance of using a multi-model approach involving alternative conceptualizations.Peer ReviewedPostprint (author's final draft

    Control Performance Optimization for Application Integration on Automotive Architectures

    Get PDF
    Automotive software implements different functionalities as multiple control applications sharing common platform resources. Although such applications are often developed independently, the control performance of the resulting system depends on how these applications are integrated. A key integration challenge is to efficiently schedule these applications on shared resources with minimal control performance degradation. We formulate this problem as that of scheduling multiple distributed periodic control tasks that communicate via messages with non-zero jitter. The optimization criterion used is a piecewise linear representation of the control performance degradation as a function of the end-to-end latency of the application. The three main contributions of this article are: 1) a constraint programming (CP) formulation to solve this integration problem optimally on time-triggered architectures; 2) an efficient heuristic called Flexi ; and 3) an experimental evaluation of the scalability and efficiency of the proposed approaches. In contrast to the CP formulation, which for many real-life problems might have unacceptably long running times, Flexireturns nearly optimal results (0.5 percent loss in control performance compared to optimal) for most problems with more acceptable running times

    Conceptual uncertainties in modelling the interaction between engineered and natural barriers of nuclear waste repositories in crystalline rocks

    Get PDF
    Nuclear waste disposal in geological formations relies on a multi-barrier concept that includes engineered components – which, in many cases, include a bentonite buffer surrounding waste packages – and the host rock. Contrasts in materials, together with gradients across the interface between the engineered and natural barriers, lead to complex interactions between these two subsystems. Numerical modelling, combined with monitoring and testing data, can be used to improve our overall understanding of rock–bentonite interactions and to predict the performance of this coupled system. Although established methods exist to examine the prediction uncertainties due to uncertainties in the input parameters, the impact of conceptual model decisions on the quantitative and qualitative modelling results is more difficult to assess. A Swedish Nuclear Fuel and Waste Management Company Task Force project facilitated such an assessment. In this project, 11 teams used different conceptualizations and modelling tools to analyse the Bentonite Rock Interaction Experiment (BRIE) conducted at the Äspö Hard Rock Laboratory in Sweden. The exercise showed that prior system understanding along with the features implemented in the available simulators affect the processes included in the conceptual model. For some of these features, sufficient characterization data are available to obtain defensible results and interpretations, whereas others are less supported. The exercise also helped to identify the conceptual uncertainties that led to different assessments of the relative importance of the engineered and natural barrier subsystems. The range of predicted bentonite wetting times encompassed by the ensemble results were considerably larger than the ranges derived from individual models. This is a consequence of conceptual uncertainties, demonstrating the relevance of using a multi-model approach involving alternative conceptualizations
    corecore