2,766 research outputs found
Coherent switching of semiconductor resonator solitons
We demonstrate switching on and off of spatial solitons in a semiconductor
microresonator by injection of light coherent with the background illumination.
Evidence results that the formation of the solitons and their switching does
not involve thermal processes.Comment: 3 pages, 5 figure
Singularity in the boundary resistance between superfluid He and a solid surface
We report new measurements in four cells of the thermal boundary resistance
between copper and He below but near the superfluid-transition
temperature . For fits of to the data yielded ,
whereas a fit to theoretical values based on the renormalization-group theory
yielded . Alternatively, a good fit of the theory to the data could
be obtained if the {\it amplitude} of the prediction was reduced by a factor
close to two. The results raise the question whether the boundary conditions
used in the theory should be modified.Comment: 4 pages, 4 figures, revte
Plume motion and large-scale circulation in a cylindrical Rayleigh-B\'enard cell
We used the time correlation of shadowgraph images to determine the angle
of the horizontal component of the plume velocity above (below) the
center of the bottom (top) plate of a cylindrical Rayleigh-B\'enard cell of
aspect ratio ( is the diameter and mm
the height) in the Rayleigh-number range for a Prandtl number . We expect that gives the
direction of the large-scale circulation. It oscillates time-periodically. Near
the top and bottom plates has the same frequency but is
anti-correlated.Comment: 4 pages, 6 figure
Southeast Research and Demonstration Farm Field Day is June 23, 2015
Certified crop advisers (CCAs) can earn 4.5 hours of credit in soil and water management by attending a special CCA morning session, followed by the afternoon spring field day tour at the Southeast Iowa Research and Demonstration Farm near Crawfordsville on June 23, 2015
Scaling of thermal conductivity of helium confined in pores
We have studied the thermal conductivity of confined superfluids on a
bar-like geometry. We use the planar magnet lattice model on a lattice with . We have applied open boundary conditions on the bar
sides (the confined directions of length ) and periodic along the long
direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal
with the critical slowing down and in order to solve the dynamical equations of
motion we use a discretization technique which introduces errors only
in the time step . Our results demonstrate the
validity of scaling using known values of the critical exponents and we
obtained the scaling function of the thermal resistivity. We find that our
results for the thermal resistivity scaling function are in very good agreement
with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex
Parametric Generation of Second Sound by First Sound in Superfluid Helium
We report the first experimental observation of parametric generation of
second sound (SS) by first sound (FS) in superfluid helium in a narrow
temperature range in the vicinity of . The temperature dependence
of the threshold FS amplitude is found to be in a good quantitative agreement
with the theory suggested long time ago and corrected for a finite geometry.
Strong amplitude fluctuations and two types of the SS spectra are observed
above the bifurcation. The latter effect is quantitatively explained by the
discreteness of the wave vector space and the strong temperature dependence of
the SS dissipation length.Comment: 4 pages, 4 postscript figures, REVTE
Quantized charge pumping through a quantum dot by surface acoustic waves
We present a realization of quantized charge pumping. A lateral quantum dot
is defined by metallic split gates in a GaAs/AlGaAs heterostructure. A surface
acoustic wave whose wavelength is twice the dot length is used to pump single
electrons through the dot at a frequency f=3GHz. The pumped current shows a
regular pattern of quantization at values I=nef over a range of gate voltage
and wave amplitude settings. The observed values of n, the number of electrons
transported per wave cycle, are determined by the number of electronic states
in the quantum dot brought into resonance with the fermi level of the electron
reservoirs during the pumping cycle.Comment: 8 page
Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets
We present a comprehensive study relating the nanostructure of Ge_0.95Mn_0.05
films to their magnetic properties. The formation of ferromagnetic nanometer
sized inclusions in a defect free Ge matrix fabricated by low temperature
molecular beam epitaxy is observed down to substrate temperatures T_S as low as
70 deg. Celsius. A combined transmission electron microscopy (TEM) and electron
energy-loss spectroscopy (EELS) analysis of the films identifies the inclusions
as precipitates of the ferromagnetic compound Mn_5Ge_3. The volume and amount
of these precipitates decreases with decreasing T_S. Magnetometry of the films
containing precipitates reveals distinct temperature ranges: Between the
characteristic ferromagnetic transition temperature of Mn_5Ge_3 at
approximately room temperature and a lower, T_S dependent blocking temperature
T_B the magnetic properties are dominated by superparamagnetism of the Mn_5Ge_3
precipitates. Below T_B, the magnetic signature of ferromagnetic precipitates
with blocked magnetic moments is observed. At the lowest temperatures, the
films show features characteristic for a metastable state.Comment: accepted for publication in Phys. Rev. B 74 (01.12.2006). High
resolution images ibide
Boundary Limitation of Wavenumbers in Taylor-Vortex Flow
We report experimental results for a boundary-mediated wavenumber-adjustment
mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow
(TVF). The system consists of fluid contained between two concentric cylinders
with the inner one rotating at an angular frequency . As observed
previously, the Eckhaus instability (a bulk instability) is observed and limits
the stable wavenumber band when the system is terminated axially by two rigid,
non-rotating plates. The band width is then of order at small
() and agrees well with
calculations based on the equations of motion over a wide -range.
When the cylinder axis is vertical and the upper liquid surface is free (i.e.
an air-liquid interface), vortices can be generated or expelled at the free
surface because there the phase of the structure is only weakly pinned. The
band of wavenumbers over which Taylor-vortex flow exists is then more narrow
than the stable band limited by the Eckhaus instability. At small
the boundary-mediated band-width is linear in . These results are
qualitatively consistent with theoretical predictions, but to our knowledge a
quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig
Strong laser fields as a probe for fundamental physics
Upcoming high-intensity laser systems will be able to probe the
quantum-induced nonlinear regime of electrodynamics. So far unobserved QED
phenomena such as the discovery of a nonlinear response of the quantum vacuum
to macroscopic electromagnetic fields can become accessible. In addition, such
laser systems provide for a flexible tool for investigating fundamental
physics. Primary goals consist in verifying so far unobserved QED phenomena.
Moreover, strong-field experiments can search for new light but weakly
interacting degrees of freedom and are thus complementary to accelerator-driven
experiments. I review recent developments in this field, focusing on photon
experiments in strong electromagnetic fields. The interaction of
particle-physics candidates with photons and external fields can be
parameterized by low-energy effective actions and typically predict
characteristic optical signatures. I perform first estimates of the accessible
new-physics parameter space of high-intensity laser facilities such as POLARIS
and ELI.Comment: 7 pages, Key Lecture at the ELI Workshop and School on "Fundamental
Physics with Ultra-High Fields", 9 September - 2 October 2008 at Frauenworth
Monastery, German
- …
