17,210 research outputs found

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Investigations into the BFKL Mechanism with a Running QCD Coupling

    Get PDF
    We present approximations of varying degree of sophistication to the integral equations for the (gluon) structure functions of a hadron (``the partonic flux factor'') in a model valid in the Leading Log Approximation with a running coupling constant. The results are all of the BFKL-type, i.e. a power in the Bjorken variable x_B^{-\lambda} with the parameter \lambda determined from the size \alpha_0 of the ``effective'' running coupling \bar{\alpha}\equiv 3\alpha_s/\pi= \alpha_0/\log(k_{\perp}^2) and varying depending upon the treatment of the transverse momentum pole. We also consider the implications for the transverse momentum (k_{\perp}) fluctuations along the emission chains and we obtain an exponential falloff in the relevant \kappa\equiv \log(k_{\perp}^2)-variable, i.e. an inverse power (k_{\perp}^2)^{-(2+\lambda)} with the same parameter \lambda. This is different from the BFKL-result for a fixed coupling, where the distributions are Gaussian in the \kappa-variable with a width as in a Brownian motion determined by ``the length'' of the emission chains, i.e. \log(1/x_B). The results are verified by a realistic Monte Carlo simulation and we provide a simple physics motivation for the change.Comment: 24 pages, 10 supplementary files, submitted to Physical Review

    Resource effective control of Elymus repens

    Get PDF
    Preliminary results show that there is room for improvement within existing control methods of couch grass (Elymus repens (L.) Gould). It may be possible to reduce the number of stubble cultivations during autumn by timing the treatment, and to reduce the cultivation depth by using a goose foot cultivator (5 cm) instead of a disc cultivator (10 cm), without sacrificing couch grass control efficiency. The first year of the experiment, the use of a goose foot cultivator resulted in less nitrogen leaching than cultivation by disc. A reduced number of stubble cultivations potentially reduces nutrient loss, fuel consumption and the workload of the farmer. Our experiments with cover crops to control couch grass in cereals has yet to prove significant effects on couch grass control, but cover crops combined with goose foot hoeing did reduce nitrogen leaching by more than a third compared to cultivation by disc. Further data is necessary to see if the system can be used to effectively control couch grass without significant yield losses. Regardless, it can reduce nitrogen leaching and potentially provide other ecosystem services, e.g. control weeds other than couch grass

    The dynamics of dissipative multi-fluid neutron star cores

    Full text link
    We present a Newtonian multi-fluid formalism for superfluid neutron star cores, focussing on the additional dissipative terms that arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids". The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks in the colour-flavour-locked phase in which a population of neutral K^0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multi-fluid systems.Comment: RevTex, no figure

    The Feynman-Wilson gas and the Lund model

    Get PDF
    We derive a partition function for the Lund fragmentation model and compare it with that of a classical gas. For a fixed rapidity ``volume'' this partition function corresponds to a multiplicity distribution which is very close to a binomial distribution. We compare our results with the multiplicity distributions obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the fragmentation vertices of the Lund string. Secondly, for the final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure

    The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system

    Full text link
    The inner crust of a mature neutron star is composed of an elastic lattice of neutron-rich nuclei penetrated by free neutrons. These neutrons can flow relative to the crust once the star cools below the superfluid transition temperature. In order to model the dynamics of this system, which is relevant for a range of problems from pulsar glitches to magnetar seismology and continuous gravitational-wave emission from rotating deformed neutron stars, we need to understand general relativistic Lagrangian perturbation theory for elastic matter coupled to a superfluid component. This paper develops the relevant formalism to the level required for astrophysical applications.Comment: 31 pages, double spacing, minor typos fixe
    corecore