56 research outputs found

    Diagnostic value of 18F-FDG-PET/CT for monitoring myelofibrosis after allogeneic stem cell transplantation

    Get PDF
    Myelofibrosis is a rare hematopoietic stem cell neoplasm leading to marked bone marrow fibrosis and ineffective hematopoiesis. We report a case highlighting the potential role of 18F fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for therapy monitoring. A 62-year-old man with myelofibrosis underwent FDG-PET/CT for evaluation of the extent of disease before and after allogeneic stem cell transplantation (SCT). PET after SCT demonstrated complete normalization of initially increased bone marrow tracer uptake, consistent with bone marrow biopsy showing complete remission. 18F-FDG-PET/CT may become a valuable diagnostic tool in myelofibrosis, enabling both sensitive initial staging and therapy monitoring

    Myelofibrosis: molecular and cell biological aspects

    Get PDF
    A subset of myeloproliferative disorders (MPN) and myelodyplastic syndromes (MDS) evolves to fibrosis of the bone marrow associated with haematopoietic insufficiency. We have been interested in chemokines involved in fibrogenesis within the bone marrow. Besides TGFβ we could identify a number of additional mediators including osteoprotegerin and bone morphogenic proteins. In MPN JAK2 or MPL mutation are not linked to the propensity for bone marrow fibrosis. The hypothesis that an increased intramedullary decay of megakaryocytes undergoing appotosis takes place within the marrow, thus liberating fibrogenic cytokines, could not be confirmed. On the contrary, megakaryocytes in primary fibrosis revealed low expression of proapoptotic genes such as BNIP3. Interestingly, BNIP 3 expression was down regulated in megakaryocytic cell lines kept in hypoxic conditions. Furthermore, expression arrays revealed hypoxia inducible genes to be up-regulated in primary myelofibrosis. Fibrotic MPN are characterized by aberrant proplatelet formation which represent cytoplasmic pseudopodia and normally extend into the sinus. In fibrotic MPN orientation of proplatelet growth appears to be disturbed, which could lead to an aberrant deposition of platelets in the marrow with consecutive liberation of fibrogenic cytokines

    Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts

    Get PDF
    Pathological erythropoiesis with consequent anemia is a leading cause of symptomatic morbidity in internal medicine. The etiologies of anemia are complex and include reactive as well as neoplastic conditions. Clonal expansion of erythroid cells in the bone marrow may result in peripheral erythrocytosis and polycythemia but can also result in anemia when clonal cells are dysplastic and have a maturation arrest that leads to apoptosis and hinders migration, a constellation typically seen in the myelodysplastic syndromes. Rarely, clonal expansion of immature erythroid blasts results in a clinical picture resembling erythroid leukemia. Although several mechanisms underlying normal and abnormal erythropoiesis and the pathogenesis of related disorders have been deciphered in recent years, little is known about specific markers and targets through which prognosis and therapy could be improved in anemic or polycythemic patients. In order to discuss new markers, targets and novel therapeutic approaches in erythroid disorders and the related pathologies, a workshop was organized in Vienna in April 2017. The outcomes of this workshop are summarized in this review, which includes a discussion of new diagnostic and prognostic markers, the updated WHO classification, and an overview of new drugs used to stimulate or to interfere with erythropoiesis in various neoplastic and reactive conditions. The use and usefulness of established and novel erythropoiesis-stimulating agents for various indications, including myelodysplastic syndromes and other neoplasms, are also discussed

    Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis

    Get PDF
    Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.Leimkühler and colleagues demonstrate that mesenchymal stromal progenitor cells are fibro

    The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells

    Get PDF
    Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. © 2013 Haas et al

    Genome-wide DNA methylation profiling is able to identify prefibrotic PMF cases at risk for progression to myelofibrosis

    No full text
    Background!#!Patients suffering from the BCR-ABL1-negative myeloproliferative disease prefibrotic primary myelofibrosis (pre-PMF) have a certain risk for progression to myelofibrosis. Accurate risk estimation for this fibrotic progression is of prognostic importance and clinically relevant. Commonly applied risk scores are based on clinical, cytogenetic, and genetic data but do not include epigenetic modifications. Therefore, we evaluated the assessment of genome-wide DNA methylation patterns for their ability to predict fibrotic progression in PMF patients.!##!Results!#!For this purpose, the DNA methylation profile was analyzed genome-wide in a training set of 22 bone marrow trephines from patients with either fibrotic progression (n = 12) or stable disease over several years (n = 10) using the 850 k EPIC array from Illumina. The DNA methylation classifier constructed from this data set was validated in an independently measured test set of additional 11 bone marrow trephines (7 with stable disease, 4 with fibrotic progress). Hierarchical clustering of methylation β-values and linear discriminant classification yielded very good discrimination between both patient groups. By gene ontology analysis, the most differentially methylated CpG sites are primarily associated with genes involved in cell-cell and cell-matrix interactions.!##!Conclusions!#!In conclusion, we could show that genome-wide DNA methylation profiling of bone marrow trephines is feasible under routine diagnostic conditions and, more importantly, is able to predict fibrotic progression in pre-fibrotic primary myelofibrosis with high accuracy

    3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells.

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance
    corecore