4 research outputs found

    Temperature-dependent spin relaxation : a major factor in electron backward transfer following the quenching of *Ru(bpy)3 2+ by methyl viologen

    No full text
    The magnetic-field dependence of the cage escape efficiency (φce) of [Ru(bpy)3]3+ and methyl viologen radicals (MV+ ) from the primary redox pair formed upon quenching of photoexcited [Ru(bpy)3]2+ by MV2+ was measured by laser flash spectroscopy in aqueous solution as a function of the magnetic field (0-2.85 T) in the temperature range from 5 to 69 °C. Furthermore, the 1H NMR T1 times of the paramagnetic [Ru(bpy)3]3+ were measured between -40 and 42 °C. The kinetic data were analyzed in terms of a kinetic model that takes into account spin conservation in the forward reaction between the 3MLCT state of [Ru(bpy)3]2+ and the electron acceptor MV2+ yielding a triplet spin-correlated radical pair (RP) and the in-cage backward electron transfer requiring singlet character of the RP. The triplet-to-singlet spin conversion of the geminate RP is explicitly treated by the stochastic Liouville equation formalism. By theoretical simulation of the observed magnetic field dependence of φce, the temperature dependent absolute values of the rate constants kce (cage escape), kbet (backward electron transfer in singlet RPs), and kTS (magnetic-field independent triplet-to-singlet interconversion) could be assessed. The temperature dependence of kce exhibits a very good proportionality to the solvent viscosity. The values obtained for kTS are in good agreement with the results on the electron spin relaxation time of [Ru(bpy)3]3+ derived by the Solomon relation from the 1H NMR T1 times. The effective rate of backward electron transfer in the geminate RP turns out to be close to spin-controlled, i.e., it is determined by the rate constant kTS of the triplet-singlet spin conversion process. The true rate constant kbet, varying from 5.5 × 1010 s-1 to 1.2 × 1011 s-1, is about seven times larger than the effective value for the total backward electron transfer comprising spin conversion and spin-allowed backward electron transfer

    Spin chemical control of photoinduced electron-transfer processes in ruthenium(II)-trisbipyridine-based supramolecular triads

    No full text
    Nanosecond time-resolved absorption studies in a magnetic field ranging from zero to 3.0 T have been performed on a series of covalently linked donor-Ru(bipyridine)3-acceptor complexes (D-C2+-A2+). In these complexes the electron donor is a phenothiazine moiety linked to a bipyridine by a (-CH2-)p (p = 1, 4, 5, 7) chain, and the electron acceptor is an N,N'-diquaternary-2,2'-bipyridinium moiety, linked to a bipyridine by a (-CH2-)2· chain. On the nanosecond time scale the first detectable photoinduced electron-transfer product after exciting the complex C2+ is the charge-separated (CS) state, D+-C2+-A+, where an electron of the phenothiazine moiety, D, has been transferred to the diquat moiety, A2+. In zero field the lifetime of the CS state is about 150 ns. At low fields (B0 0.5 T) the total amplitude of the CS absorption signal decreases and the relative contribution of the fast decaying component increases. The magnetic field effects can be consistently interpreted and quantitatively modeled by taking into account the mechanisms and kinetics of the spin multiplicity changes in the CS state and its precursor, a short-lived CT state (D-C3+-A+) formed upon primary electron transfer from the triplet excited complex to the diquat moiety. Exploiting the magnetic field dependent kinetics, the rate constants of the triplet-singlet transitions in the two types of linked radical pairs and of all the electron-transfer processes following the primary one can be assessed. Magnetic-field-dependent investigations thus can be essential for the understanding of the complex kinetics in supramolecular systems with sequential cyclic electron transfer
    corecore