5 research outputs found

    Microsized subsurface modification of mono-crystalline silicon via non-linear absorption

    Get PDF
    We introduce a novel method of optically inducing microsized subsurface structures using non-linear absorption of near infrared light in mono-crystalline silicon. We discuss the physical processes such as multi-photon absorption and self focussing in the material. The results presented in this paper demonstrate a new method of subsurface modifications in silicon and may open up novel avenues for optical devices embedded in silicon and optical process for the separation of wafers from their ingots

    Novel concept for three-dimensional polymer waveguides for optical on-chip interconnects

    Get PDF
    We present a simulation study and first experimental implementations for a novel polymer three-dimensional waveguide design. The structures described here allow for new concepts of on-chip communication. By using direct laser writing, free-formed polymer structures can be realized directly on the surface of integrated circuits on wafer- or die-level. Further photonic structures like waveguides, resonators, splitters and couplers can be realized with an extended freedom of design to the third dimension. Our approach opens new possibilities for optical interconnects and routing for on-chip signal transmission with a high fill factor and CMOS compatibility
    corecore