1,051 research outputs found
Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I: Macroscopic effects of the electron flows
In this work, we compare gyrokinetic (GK) and fully kinetic Particle-in-Cell
(PIC) simulations of magnetic reconnection in the limit of strong guide field.
In particular, we analyze the limits of applicability of the GK plasma model
compared to a fully kinetic description of force free current sheets for finite
guide fields (). Here we report the first part of an extended comparison,
focusing on the macroscopic effects of the electron flows. For a low beta
plasma (), it is shown that both plasma models develop magnetic
reconnection with similar features in the secondary magnetic islands if a
sufficiently high guide field () is imposed in the kinetic PIC
simulations. Outside of these regions, in the separatrices close to the X
points, the convergence between both plasma descriptions is less restrictive
(). Kinetic PIC simulations using guide fields
reveal secondary magnetic islands with a core magnetic field and less energetic
flows inside of them in comparison to the GK or kinetic PIC runs with stronger
guide fields. We find that these processes are mostly due to an initial shear
flow absent in the GK initialization and negligible in the kinetic PIC high
guide field regime, in addition to fast outflows on the order of the ion
thermal speed that violate the GK ordering. Since secondary magnetic islands
appear after the reconnection peak time, a kinetic PIC/GK comparison is more
accurate in the linear phase of magnetic reconnection. For a high beta plasma
() where reconnection rates and fluctuations levels are reduced,
similar processes happen in the secondary magnetic islands in the fully kinetic
description, but requiring much lower guide fields ().Comment: 18 pages, 13 figures. Revised to match with the published version in
Physics of Plasma
Investigation of the relation between local diffusivity and local inherent structures in the Kob-Andersen Lennard-Jones model
We analyze one thousand independent equilibrium trajectories of a system of
155 Lennard Jones particles to separate in a model-free approach the role of
temperature and the role of the explored potential energy landscape basin depth
in the particle dynamics. We show that the diffusion coefficient can be
estimated as a sum over over contributions of the sampled basins, establishing
a connection between thermodynamics and dynamics in the potential energy
landscape framework. We provide evidence that the observed non-linearity in the
relation between local diffusion and basin depth is responsible for the
peculiar dynamic behavior observed in supercooled states and provide an
interpretation for the presence of dynamic heterogeneities.Comment: minor text changes, references adde
Magnetic heat conductivity in : linear temperature dependence
We present experimental results for the thermal conductivity of the
pseudo 2-leg ladder material . The strong buckling of the ladder
rungs renders this material a good approximation to a Heisenberg-chain.
Despite a strong suppression of the thermal conductivity of this material in
all crystal directions due to inherent disorder, we find a dominant magnetic
contribution along the chain direction.
is \textit{linear} in temperature, resembling the
low-temperature limit of the thermal Drude weight of the
Heisenberg chain. The comparison of and
yields a magnetic mean free path of \AA, in good agreement with magnetic measurements.Comment: appears in PR
Superconductivity from repulsion in LiFeAs: novel s-wave symmetry and potential time-reversal symmetry breaking
We analyze the structure of the pairing interaction and superconducting gap
in LiFeAs by decomposing the pairing interaction for various kz cuts into s-
and d-wave components and by studying the leading superconducting
instabilities. We use the ten orbital tight-binding model, derived from
ab-initio LDA calculations with hopping parameters extracted from the fit to
ARPES experiments. We find that the pairing interaction almost decouples
between two subsets, one consists of the outer hole pocket and two electron
pockets, which are quasi-2D and are made largely out of dxy orbital, and the
other consists of the two inner hole pockets, which are quasi-3D and are made
mostly out of dxz and dyz orbitals. Furthermore, the bare inter-pocket and
intra-pocket interactions within each subset are nearly equal. In this
situation, small changes in the intra-pocket and inter-pocket interactions due
to renormalizations by high-energy fermions give rise to a variety of different
gap structures. We find four different configurations of the s-wave gap
immediately below Tc: the one in which superconducting gap changes sign between
two inner hole pockets and between the outer hole pocket and two electron
pockets, the one in which the gap changes sign between two electron pockets and
three hole pockets, the one in which the gap on the outer hole pocket differs
in sign from the gaps on the other four pockets, and the one in which the gaps
on two inner hole pockets have one sign, and the gaps on the outer hole pockets
and on electron pockets have different sign. Different s-wave gap
configurations emerge depending on whether the renormalized interactions
increase attraction within each subset or increase the coupling between
particular components of the two subsets. We argue that the state with opposite
sign of the gaps on the two inner hole pockets has the best overlap with ARPES
data.Comment: 23 pages, 15 figure
Electron Spin Dynamics of the Superconductor CaC6 probed by ESR
Conduction Electron Spin Resonance (CESR) was measured on a thick slab of
CaC6 in the normal and superconducting state. A surprising increase of the CESR
intensity below Tc can not be explained by the theoretically predicted change
in spin susceptibility. It is interpreted as a vortex enhanced increase of the
effective skin depth. Non-linear microwave absorption measurements in the
superconducting state describe CaC6 as an anisotropic BCS superconductor. The
study of the spin dynamics in the superconducting state and the discovery of
the vortex enhanced increase of the skin depth poses a challenge to theory to
provide a comprehensive description of the observed phenomena. CESR data in the
normal state characterize CaC6 as a three-dimensional (3D) metal. The analysis
suggests that the scattering of conduction electrons is dominated by impurities
and supports the description of superconductivity in the dirty limit.Comment: 4 pages, 3 figure
Monopolelike probes for quantitative magnetic force microscopy: calibration and application
A local magnetization measurement was performed with a Magnetic Force
Microscope (MFM) to determine magnetization in domains of an exchange coupled
[Co/Pt]/Co/Ru multilayer with predominant perpendicular anisotropy. The
quantitative MFM measurements were conducted with an iron filled carbon
nanotube tip, which is shown to behave like a monopole. As a result we
determined an additional in-plane magnetization component of the multilayer,
which is explained by estimating the effective permeability of the sample
within the \mu*-method.Comment: 3 pages, 3 figure
- …