67 research outputs found

    Residual circulation trajectories and transit times into the extratropical lowermost stratosphere

    Get PDF
    Transport into the extratropical lowermost stratosphere (LMS) can be divided into a slow part (time-scale of several months to years) associated with the global-scale stratospheric residual circulation and a fast part (time-scale of days to a few months) associated with (mostly quasi-horizontal) mixing (i.e. two-way irreversible transport, including stratosphere-troposphere exchange). The stratospheric residual circulation can be considered to consist of two branches: a deep branch more strongly associated with planetary waves breaking in the middle to upper stratosphere, and a shallow branch more strongly associated with synoptic-scale waves breaking in the subtropical lower stratosphere. In this study the contribution due to the stratospheric residual circulation alone to transport into the LMS is quantified using residual circulation trajectories, i.e. trajectories driven by the (time-dependent) residual mean meridional and vertical velocities. This contribution represents the advective part of the overall transport into the LMS and can be viewed as providing a background onto which the effect of mixing has to be added. Residual mean velocities are obtained from a comprehensive chemistry-climate model as well as from reanalysis data. Transit times of air traveling from the tropical tropopause to the LMS along the residual circulation streamfunction are evaluated and compared to recent mean age of air estimates. A clear time-scale separation with much smaller transit times into the mid-latitudinal LMS than into polar LMS is found that is indicative of a clear separation of the shallow from the deep branch of the residual circulation. This separation between the shallow and the deep circulation branch is further manifested in a clear distinction in the aspect ratio of the vertical to meridional extent of the trajectories as well as the integrated mass flux along the residual circulation trajectories. The residual transit time distribution reproduces qualitatively the observed seasonal cycle of youngest air in the extratropical LMS in fall and oldest air in spring

    Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2

    Get PDF
    The seasonality of transport and mixing of air into the lowermost stratosphere (LMS) is studied using distributions of mean age of air and a~mass balance approach, based on in-situ observations of SF6 and CO2 during the SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) aircraft campaigns. Combining the information of the mean age of air and the water vapour distributions we demonstrate that the tropospheric air transported into the LMS above the extratropical tropopause layer (ExTL) originates predominantly from the tropical tropopause layer (TTL). The concept of our mass balance is based on simultaneous measurements of the two passive tracers and the assumption that transport into the LMS can be described by age spectra which are superposition of two different modes. Based on this concept we conclude that the stratospheric influence on LMS composition is strongest in April with tropospheric fractions (α1) below 20% and that the strongest tropospheric signatures are found in October with (α1 greater than 80%. Beyond the fractions, our mass balance concept allows to calculate the associated transit times for transport of tropospheric air from the tropics into the LMS. The shortest transit times (<0.3 years) are derived for the summer, continuously increasing up to 0.8 years by the end of spring. These findings suggest that strong quasi-horizontal mixing across the weak subtropical jet from summer to mid of autumn and the considerably shorter residual transport time-scales within the lower branch of the Brewer-Dobson circulation in summer than in winter dominates the tropospheric influence in the LMS until the beginning of next year's summer

    Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of SF6 and CO2

    Get PDF
    The seasonality of transport and mixing of air into the lowermost stratosphere (LMS) is studied using distributions of mean age of air and a mass balance approach, based on in-situ observations of SF6 and CO2 during the SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) aircraft campaigns. Combining the information of the mean age of air and the water vapour distributions we demonstrate that the tropospheric air transported into the LMS above the extratropical tropopause layer (ExTL) originates predominantly from the tropical tropopause layer (TTL). The concept of our mass balance is based on simultaneous measurements of the two passive tracers and the assumption that transport into the LMS can be described by age spectra which are superposition of two different modes. Based on this concept we conclude that the stratospheric influence on LMS composition is strongest in April with extreme values of the tropospheric fractions (alpha1) below 20% and that the strongest tropospheric signatures are found in October with alpha1 greater than 80%. Beyond the fractions, our mass balance concept allows us to calculate the associated transit times for transport of tropospheric air from the tropics into the LMS. The shortest transit times (<0.3 years) are derived for the summer, continuously increasing up to 0.8 years by the end of spring. These findings suggest that strong quasi-horizontal mixing across the weak subtropical jet from summer to mid of autumn and the considerably shorter residual transport time-scales within the lower branch of the Brewer-Dobson circulation in summer than in winter dominates the tropospheric influence in the LMS until the beginning of next year's summer

    Untersuchung des Transports in der untersten StratosphÀre anhand von in-situ Messungen langlebiger Spurengase

    Get PDF
    Im Rahmen des Projektes SPURT (Spurenstofftransport in der Tropopausenregion) als Teil des deutschen AtmosphĂ€renforschungsprogramms AFO 2000 wurden bei 8 Messkampagnen mit insgesamt 36 FlĂŒgen innerhalb eines Beobachtungszeitraums von zwei Jahren (Nov. 2001 bis Juli 2003) Spurengasmessungen in dem Breitenbereich zwischen 35°N und 75°N durchgefĂŒhrt. FĂŒr die Messungen der Spurengase N2O, F12, SF6, H2 und CO wurde der vollautomatisierte in-situ GC (Gaschromatograph) GhOST II (Gas Chromatograph for the Observation of Stratospheric Tracers) entwickelt und eingesetzt. Das Ziel dieser Messungen war die Untersuchung der jahreszeitlichen VariabilitĂ€t der Spurengase in der oberen TroposphĂ€re und untersten StratosphĂ€re (UT/LMS: Upper Troposphere/Lowermost Stratosphere), um die Transport- und Austauschprozesse in der Tropopausenregion besser zu verstehen. Zur Untersuchung von Transport und Mischung in der UT/LMS wurden die RĂŒckwĂ€rtstrajektorien entlang der Flugpfade, die Verteilungen der Tracer N2O, F12, SF6, CO und CO2 (MPI fĂŒr Chemie in Mainz), die Tracer/Tracer-Korrelationen N2O/F12, N2O/O3 F12/O3 und SF6/O3 und die Verteilungen des aus SF6-Messungen berechnete mittlere Alters der Luft herangezogen. ZusĂ€tzlich wurden die simultanen Messungen der beiden Alterstracer CO2 und SF6 genutzt, um die Propagation der Amplitude des troposphĂ€rischen CO2-Jahresgangs in die LMS zu bestimmen und daraus mit Hilfe eines empirischen Altersspektrums den Eintrag und die mittlere Transportzeit aus der TroposphĂ€re in die unterste StratosphĂ€re zu quantifizieren. GrundsĂ€tzlich muss die LMS in zwei Bereiche eingeteilt werden – die Übergangsschicht („tropopause following layer“) bis etwa 20-30 K ĂŒber der potentiellen Temperatur der lokalen Tropopause [Hoor et al., 2004] und die freie LMS oberhalb dieser Schicht. Als wesentliche Unterscheidungsmerkmale beider Bereiche wird die mittlere Transportzeit des Eintrags troposphĂ€rischer Luft identifiziert. Aus Trajektorienuntersuchungen und Tracerverteilungen (Kap. 3.4) kann gezeigt werden, dass der Transport in die Übergangsschicht und die Mischungsprozesse in diesem Bereich auf der Zeitskala der mesoskaligen troposphĂ€rischen Prozesse ablaufen. Im Gegensatz dazu werden aus der Massenbilanz (Kap. 5.3) mittlere Transportzeiten aus der TroposphĂ€re in die freie LMS von einigen Wochen bis zu mehreren Monaten abgeleitet. Außerdem konnte nachgewiesen werden, dass der troposphĂ€rische Eintrag in der freien LMS fast ausschließlich auf quasihorizontale isentrope Einmischung aus den Tropen ĂŒber die Transportbarriere des Subtropenjets zurĂŒckzufĂŒhren ist. Nur im Sommer und Herbst konnte auch oberhalb der Übergangsschicht fĂŒr einzelne Messungen ein Einfluss aus der extratropischen TroposphĂ€re beobachtet werden. Die in dieser Arbeit untersuchten Tracerverteilungen und -korrelationen (Kap. 4) und die Verteilung des mittleren Alters (Kap.5.2) in der LMS zeigen einen Jahresgang mit einem maximalen troposphĂ€rischen Einfluss im Oktober und einem maximalen stratosphĂ€rischen Einfluss im April. Diese saisonale Charakteristik in der freien LMS kann durch die saisonalen Änderungen des VerhĂ€ltnisses von AbwĂ€rtstransport aus der Overworld und quasihorizontalem Transport aus den Tropen und durch die mit den jeweiligen Transportprozessen assoziierte mittlere Transportzeiten erklĂ€rt werden, die aus Massenbilanzrechnungen bestimmt wurden. Es wird gezeigt, dass der ĂŒberwiegende Eintrag von troposphĂ€rischer Luft in die LMS im Sommer und Herbst stattfindet, wobei im Mittel die kĂŒrzesten mittleren Transitzeiten (unter 0.3 Jahre) fĂŒr den August und die lĂ€ngsten Transitzeiten (ĂŒber 0.6 Jahre) fĂŒr den Mai berechnet werden. Aus den Ergebnissen wird gefolgert, dass ein ausgeprĂ€gter isentroper Austauschprozess ĂŒber den Subtropenjet im Sommer bis in den Herbst hinein der dominierende troposphĂ€rische Einfluss in der LMS bis in den Mai ist. Der Vergleich zwischen SPURT und anderen in der UT/LMS im Zeitraum von 1992 bis 1998 durchgefĂŒhrten Messkampagnen zeigt einen systematischen Unterschied in den N2O/O3-Korrelationen. Die Zunahme von O3 relativ zu N2O in der LMS ist um etwa 6.5 ppb O3 pro 1 ppb N2O bzw. etwa 40% grĂ¶ĂŸer als die Zunahme bei jahreszeitlich vergleichbaren frĂŒheren Kampagnen. Durch eine weitergehende Analyse der Messungen, z.B. durch den Vergleich der N2O-Verteilungen in der LMS bei verschiedenen Messkampagnen, und zusĂ€tzlichen Informationen aus Satelliten- und Ballonmessungen wird abgeleitet, dass diese Änderung der N2O/O3-Korrelationen im Wesentlichen auf einen im Zeitraum von SPURT stĂ€rkeren quasihorizontalen Transport aus den Tropen in die Extratropen im Bereich des so genannten „tropical controlled transition layer“ [Rosenlof et al., 1997] zwischen 16-21 km (bzw. &#920; &#8776; 380-450 K) zurĂŒckzufĂŒhren ist. In Kooperation mit B. Bregman wurden mit dem Chemie-Transport-Modell TM5 des KNMI die Verteilungen von SF6 und CO2 in der TroposphĂ€re und StratosphĂ€re, unter den Zielsetzungen Evaluation des Modelltransports und Erweiterung des Datensatzes von SPURT auf globalen Maßstab, fĂŒr den Zeitraum 1.1.2000 bis 31.12.2002 modelliert. Dabei konnte gezeigt werden, dass bei Modellstudien zur Evaluation des Transports mit Hilfe von Alterstracern nicht nur troposphĂ€risch monoton steigende Tracer wie SF6 sondern auch saisonal variable Tracer wie CO2 verwendet werden mĂŒssen. Bei dem Vergleich der Modellergebnisse des TM5 mit ER2- und SPURTMessungen zeigt sich, dass das Modell zum jetzigen Zeitpunkt in der Lage ist, das mittlere Alter in der unteren StratosphĂ€re und die SF6- und CO2-Verteilungen in der LMS qualitativ richtig wiederzugeben. Das mittlere Alter in der unteren StratosphĂ€re wird um etwa 0.5 bis 1 Jahr in den Tropen ĂŒber- und in den Extratropen unterschĂ€tzt. Die vertikalen Gradienten im Modell fĂŒr SF6 und CO2 in der LMS sind, insbesondere im Winter und FrĂŒhjahr, zu gering. Die Amplitude des CO2-Jahresganges in der oberen TroposphĂ€re und in der LMS wird durch das Modell unterschĂ€tzt, wĂ€hrend der saisonale Verlauf des Jahresganges richtig wiedergegeben wird. Im Moment wird vermutet, dass eine zu starke isentrope Mischung zwischen Tropen und Extratropen und/oder ein zu geringer AufwĂ€rtstransport in der extratropischen TroposphĂ€re im Sommer und Herbst die Ursachen fĂŒr die beobachteten Abweichungen zwischen Modell und Messung sind

    On the structural changes in the Brewer-Dobson circulation after 2000

    Get PDF
    In this paper we present evidence that the observed increase in tropical upwelling after the year 2000 may be attributed to a change in the Brewer-Dobson circulation pattern. For this purpose, we use the concept of transit times derived from residual circulation trajectories and different in-situ measurements of ozone and nitrous dioxide. Observations from the Canadian midlatitude ozone profile record, probability density functions of in-situ N2O observations and a shift of the N2O-O3 correlation slopes, taken together, indicate that the increased upwelling in the tropics after the year 2000 appears to have triggered an intensification of tracer transport from the tropics into the extratropics in the lower stratosphere below about 500 K. This finding is corroborated by the fact that transit times along the shallow branch of the residual circulation into the LMS have decreased for the same time period (1993–2003). On a longer time scale (1979–2009), the transit time of the shallow residual circulation branch show a steady decrease of about −1 month/decade over the last 30 years, while the transit times of the deep branch remain unchanged. This highlights the fact that a change in the upwelling across the tropical tropopause is not a direct indicator for changes of the whole Brewer-Dobson circulation

    Fractional release factors of long-lived halogenated organic compounds in the tropical stratosphere

    Get PDF
    Fractional release factors (FRFs) of organic trace gases are time-independent quantities that influence the calculation of Global Warming Potentials and Ozone Depletion Potentials. We present the first set of vertically resolved FRFs for 15 long-lived halocarbons in the tropical stratosphere up to 34 km altitude. They were calculated from measurements on air samples collected on board balloons and a high altitude aircraft. We compare the derived dependencies of FRFs on the mean stratospheric transit times (the so-called mean ages of air) with similarly derived FRFs originating from measurements at higher latitudes and find significant differences. Moreover a comparison with averaged FRFs currently used by the World Meteorological Organisation revealed the limitations of these measures due to their observed vertical and latitudinal variability. The presented data set could be used to improve future ozone level and climate projections

    A versatile, refrigerant- and cryogen-free cryofocusing-thermodesorption unit for preconcentration of traces gases in air

    Get PDF
    We present a compact and versatile cryofocusing– thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. -80°C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. 200°C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography – mass spectrometry (GC–MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately -80 to +150°C and a substance mixing ratio range of less than 1 ppt (pmol mol−1)to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC–MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOSTMS (Gas chromatograph for the Observation of Tracers – coupled with a Mass Spectrometer)

    Sensitivity of age of air trends to the derivation method for non-linear increasing inert SF6

    Get PDF
    Mean age of air (AoA) is a diagnostic of transport along the stratospheric Brewer–Dobson circulation. While models consistently show negative trends, long-term time series (1975–2016) of AoA derived from observations show non-significant positive trends in mean AoA in the Northern Hemisphere. This discrepancy between observed and modelled mean AoA trends is still not resolved. There are uncertainties and assumptions required when deriving AoA from trace gas observations. At the same time, AoA from climate models is subject to uncertainties, too. In this paper, we focus on the uncertainties due to the parameter selection in the method that is used to derive mean AoA from SF6_{6} measurements in Engel et al. (2009, 2017). To correct for the non-linear increase in SF6_{6} concentrations, a quadratic fit to the time series at the reference location, i.e. the tropical surface, is used. For this derivation, the width of the AoA distribution (age spectrum) has to be assumed. In addition, to choose the number of years the quadratic fit is performed for, the fraction of the age spectrum to be considered has to be assumed. Even though the uncertainty range due to all different aspects has already been taken into account for the total errors in the AoA values, the systematic influence of the parameter selection on AoA trends is described for the first time in the present study. For this, we use the EMAC (ECHAM MESSy Atmospheric Chemistry) climate model as a test bed, where AoA derived from a linear tracer is available as a reference and modelled age spectra exist to diagnose the actual spatial age spectra widths. The comparison of mean AoA from the linear tracer with mean AoA from a SF6_{6} tracer shows systematic deviations specifically in the trends due to the selection of the parameters. However, for an appropriate parameter selection, good agreement for both mean AoA and its trend can be found, with deviations of about 1 % in mean AoA and 12 % in AoA trend. In addition, a method to derive mean AoA is evaluated that applies a convolution to the reference time series. The resulting mean AoA and its trend only depend on an assumption about the ratio of moments. Also in that case, it is found that the larger the ratio of moments, the more the AoA trend gravitates towards the negative. The linear tracer and SF6_{6} AoA are found to agree within 0.3 % in the mean and 6 % in the trend. The different methods and parameter selections were then applied to the balloon-borne SF6_{6} and CO2_{2} observations. We found the same systematic changes in mean AoA trend dependent on the specific selection. When applying a parameter choice that is suggested by the model results, the AoA trend is reduced from 0.15 to 0.07 years per decade. It illustrates that correctly constraining those parameters is crucial for correct mean AoA and trend estimates and still remains a challenge in the real atmosphere

    A versatile, refrigerant- and cryogen-free cryofocusing-thermodesorption unit for preconcentration of traces gases in air

    Get PDF
    We present a compact and versatile cryofocusing–thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. −80 °C) and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C). The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography – mass spectrometry (GC–MS) for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately −80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol<sup>−1</sup>) to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC–MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers – coupled with a Mass Spectrometer)

    On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter

    Get PDF
    Stratospheric ozone is important for both stratospheric and surface climate. In the lower stratosphere during winter, its variability is governed primarily by transport dynamics induced by wave–mean flow interactions. In this work, we analyze interannual co-variations between the distribution of zonal-mean ozone and the strength of the polar vortex as a easure of dynamical activity during northern hemispheric winter. Specifically, we study co-variability between the seasonal means of the ozone field from modern reanalyses and polar-capaveraged temperature at 100 hPa, which represents a robust and well-defined index for polar vortex strength. We focus on the vertically resolved structure of the associated extratropical ozone anomalies relative to the winter climatology and shed light on the transport mechanisms that are responsible for this response pattern. In particular, regression analysis in pressure coordinates shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima just above the polar tropopause, in the lower to mid-stratosphere and near the stratopause. In contrast, in isentropic coordinates, using ERA-Interim reanalysis data, only the midto lower stratosphere shows increased ozone, while a small negative ozone anomaly appears in the lowermost stratosphere. These differences are related to contributions due to anomalous adiabatic vertical motion, which are implicit in potential temperature coordinates. Our analyses of the ozone budget in the extratropical middle stratosphere show that the polar ozone response maximum around 600 K and the negative anomalies around 450 K beneath both reflect the combined effects of anomalous diabatic downwelling and quasi-isentropic eddy mixing, which are associated with consecutive counteracting anomalous ozone tendencies on daily timescales. We find that approx. 71 % of the total variability in polar column ozone in the stratosphere is associated with year-by-year variations in polar vortex strength based on ERA5 reanalyses for the winter seasons 1980–2022. MLS observations for 2005–2020 show hat around 86 % can be explained by these co-variations with the polar vortex
    • 

    corecore