33 research outputs found

    Response to 225Ac-PSMA-I&T after failure of long-term 177Lu-PSMA RLT in mCRPC

    Get PDF
    Purpose!#!With the spread of transjugular intrahepatic portosystemic shunts (TIPS), portosystemic shunt surgery (PSSS) has decreased and leaves more complex patients with great demands for accurate preoperative planning. The aim was to evaluate the role of imaging for predicting the most suitable PSSS approach.!##!Material and methods!#!Forty-four patients who underwent PSSS (2002 to 2013) were examined by contrast-enhanced CT (n = 33) and/or MRI (n = 15) prior to surgery. Imaging was analyzed independently by two observers (O1 and O2) with different levels of experience (O1 > O2). They recommended two shunting techniques (vessels and anastomotic variant) for each patient and ranked them according to their appropriateness and complexity. Findings were compared with the actually performed shunt procedure and its outcome.!##!Results!#!The first two choices taken together covered the performed PSSS regarding vessels in 88%/100% (CT/MRI, O1) and 76%/73% (O2); and vessels + anastomosis in 79%/73% (O1) and 67%/60% (O2). The prediction of complex surgical procedures (resection of interposing structures, additional thrombectomy, use of a collateral vessel, and use of a graft interposition) was confirmed in 87%, resulting in 80% sensitivity and 96% specificity. Larger shunt vessel distances were associated with therapy failure (p = 0.030) and a vessel distance of ≥ 20 mm was identified as optimal cutoff, in which a graft interposition was used. There was no significant difference between MRI and CT in predicting the intraoperative decisions (p = 0.294 to 1.000).!##!Conclusion!#!Preoperative imaging and an experienced radiologist can guide surgeons in PSSS. CT and MRI provide the information necessary to identify technically feasible variants and complicating factors

    Evaluation of the Efficacy of a Combined Treatment Using the mTOR-Inhibitor Everolimus and [177Lu]Lu-DOTA-TATE in Nude CD1 Mice with SSTR-Expressing Pancreatic AR42J Xenograft Tumors

    Get PDF
    Therapy options for advanced pancreatic neuroendocrine tumors (pNETs) include the mTOR inhibitor everolimus and peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-TATE, however further optimization in the therapeutic landscape is required as response rates are still low. In this study, we investigated the synergistic and potentially enhanced efficacy of a combined treatment with everolimus and [177Lu]Lu-DOTA-TATE in a mouse model. Baseline [68Ga]Ga-DOTA-TATE PET scans were obtained five days after athymic CD1 mice were inoculated with AR42J tumor cells, before separating the animals into four groups. Group 1 received a placebo, group 2 everolimus, group 3 a placebo and PRRT, and group 4 everolimus and PRRT. The treatment response was monitored by manually measuring the tumor volumes (manual tumor volume, MTV) and conducting sequential [68Ga]Ga-DOTA-TATE PET scans at one, two, and four weeks after treatment induction. The biological tumor volume (BTV) was derived from PET scans using threshold-based volume of interest (VOI) measurements. Tracer uptake was measured semi-quantitatively as a tumor to background ratio (TBR). Mice were euthanized due to excessive tumor growth according to the ethics protocol;blood samples were drawn for the preparation of full blood counts and kidneys were obtained for histological analysis. For the histological assessment, a standardized score (renal damage score, RDS) was used. Full blood counts showed significantly increased numbers of neutrophils and lymphocytes in the groups receiving PRRT. All other parameters did not differ relevantly. In the histological analysis, groups receiving PRRT had a significantly higher RDS, whereas everolimus only tended to cause an increase in the RDS. Mice in groups 1 and 2 had to be euthanized due to excessive tumor growth two weeks after the start of the therapy, whereas follow-up in groups 3 and 4 comprised four weeks. PRRT significantly inhibited tumor growth;the administration of everolimus did not induce an additional effect. A good correlation existed between MTV and BTV. PRRT significantly reduced the TBR. [68Ga]Ga-DOTA-TATE PET is suitable for monitoring tumor growth in the applied model. The high efficacy of [177Lu]Lu-DOTA-TATE is not enhanced by the combination with everolimus

    Monitoring of Tumor Growth with [F-18]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches

    Get PDF
    Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-F-18-fluoroethyl)-L-tyrosine ([F-18]-FET) to determine tumor growth in a murine glioblastoma (GBM) model including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [F-18]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: >= 1.4;>= 1.6;>= 1.8;>= 2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual-optimal" thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [F-18]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual "optimal" thresholds for BTV assessment correlated highly with SUVmax/BG (rho = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, p = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [F-18]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model. PVEC is beneficial to improve accuracy of [F-18]-FET PET SUV quantification. Although SUVmax/BG and SUVmean/BG increase during the disease course, these parameters do not correlate with the respective tumor size. For the first time, we propose a histology-verified method allowing appropriate individual BTV estimation for volumetric in vivo monitoring of tumor growth with [F-18]-FET PET and show that standardized thresholds from routine clinical practice seem to be inappropriate for BTV estimation in the GBM mouse model

    Preliminary experience with dosimetry, response and patient reported outcome after Lu-177-PSMA-617 therapy for metastatic castration-resistant prostate cancer

    Get PDF
    Prostate cancer can be targeted by ligands to the prostate-specific membrane antigen (PSMA). We aimed to evaluate dosimetry, safety and efficacy of Lu-177-PSMA- 617 radioligand therapy (RLT) in patients with metastatic castration-resistant prostate cancer (mCRPC). Fifteen patients each received two cycles of 3.7 GBq (n = 5) or 6.0 GBq (n = 10) 177Lu-PSMA-617 at an eight to ten weeks interval. For safety monitoring, each treatment was followed by dosimetry with serial quantitative SPECT as well as inpatient and outpatient recording of adverse events. Response to RLT was primarily determined by baseline to follow-up change in Ga-68-PSMA PET/CT (RECIST1.1), as well as change in prostate-specific antigen (PSA), quality of life (QoL, FACT-P scale), and pain (Brief Pain Inventory) as secondary endpoints. Radiation dose delivered to the tumor (6.1 Gy/GBq) was six to twelve-fold higher than to critical organs (kidney left/right 0.5/0.6 Gy/GBq each, salivary glands 1.0 Gy/GBq). Total radiation dose per kidney did not exceed 23 Gy in any patient. Three patients had sub-acute and latent grade 3 events, i.e. anemia, leukocytopenia, and nausea. No acute events, grade >= 4 events or high grade events for salivary gland or kidney function were observed. After two RLT cycles, 4 (27%) patients had partial response, 6 (40%) had stable disease, and 5 (33%) had progressive disease according to RECIST. Any PSA decline was observed in 12/15 (80%) patients during RLT. Significant pain relief was documented in 7/10 (70%) symptomatic patients and QoL improved in 9/15 (60%) patients. Lu-177-PSMA-617 therapy proved safe and indicated promising response rates for both objective and patient-reported outcomes in our small group of mCRPC patients

    3D Monte Carlo bone marrow dosimetry for Lu-177-PSMA therapy with guidance of non-invasive 3D localization of active bone marrow via Tc-99m-anti-granulocyte antibody SPECT/CT

    Get PDF
    Background: The bone marrow (BM) is a main risk organ during Lu-177-PSMA ligand therapy of metastasized castration-resistant prostate cancer (mCRPC) patients. So far, BM dosimetry relies on S values, which are pre-computed for reference anatomies, simplified activity distributions, and a physiological BM distribution. However, mCRPC patients may show a considerable bone lesion load, which leads to a heterogeneous and patient-specific activity accumulation close to BM-bearing sites. Furthermore, the patient-specific BM distribution might be significantly altered in the presence of bone lesions. The aim was to perform BM absorbed dose calculations through Monte Carlo (MC) simulations and to investigate the potential value of image-based BM localization. This study is based on 11 Lu-177-PSMA-617 therapy cycles of 10 patients (10 first cycles), who obtained a pre-therapeutic Ga-68-PSMA-11 PET/CT; quantitative Lu-177 SPECT acquisitions of the abdomen 24 (+CT), 48, and 72 h p.i.; and a Lu-177 whole-body planar acquisition at 24 h post-therapy. Patient-specific 3D volumes of interest were segmented from the Ga-68-PSMA-11 PET/CT, filled with activity information from the Lu-177 data, and imported into the FLUKA MC code together with the patient CT. MC simulations of the BM absorbed dose were performed assuming a physiological BM distribution according to the ICRP 110 reference male (MC1) or a displacement of active BM from the direct location of bone lesions (MC2). Results were compared with those from S values (SMIRD). BM absorbed doses were correlated with the decrease of lymphocytes, total white blood cells, hemoglobin level, and platelets. For two patients, an additional pre-therapeutic Tc-99m-anti-granulocyte antibody SPECT/CT was performed for BM localization. Results: Median BM absorbed doses were 130, 37, and 11 mGy/GBq for MC1, MC2, and SMIRD, respectively. Significant strong correlation with the decrease of platelet counts was found, with highest correlation for MC2 (MC1: r = − 0.63, p = 0.04; MC2: r = − 0.71, p = 0.01; SMIRD: r = − 0.62, p = 0.04). For both investigated patients, BM localization via Tc-99m-anti-granulocyte antibody SPECT/CT indicated a displacement of active BM from the direct location of lesions similar to model MC2 and led to a reduction in the BM absorbed dose of 40 and 41% compared to MC1. Conclusion: Higher BM absorbed doses were observed for MC-based models; however, for MC2, all absorbed doses were still below 2 Gy. MC1 resulted in critical values for some patients, but is suspected to yield strongly exaggerated absorbed doses by neglecting bone marrow displacement. Image-based BM localization might be beneficial, and future studies are recommended to support an improvement for the prediction of hematoxicities

    Dosimetry and optimal scan time of 18FSiTATE-PET/CT in patients with neuroendocrine tumours

    Get PDF
    PURPOSE Radiolabelled somatostatin analogues targeting somatostatin receptors (SSR) are well established for combined positron emission tomography/computer tomography (PET/CT) imaging of neuroendocrine tumours (NET). 18FSiTATE has recently been introduced showing high image quality, promising clinical performance and improved logistics compared to the clinical reference standard 68Ga-DOTA-TOC. Here we present the first dosimetry and optimal scan time analysis. METHODS Eight NET patients received a 18FSiTATE-PET/CT (250 ± 66~MBq) with repeated emission scans (10, 30, 60, 120, 180~min after injection). Biodistribution in normal organs and SSR-positive tumour uptake were assessed. Dosimetry estimates for risk organs were determined using a combined linear-monoexponential model, and by applying 18F S-values and reference target masses for the ICRP89 adult male or female (OLINDA 2.0). Tumour-to-background ratios were compared quantitatively and visually between different scan times. RESULTS After 1 h, normal organs showed similar tracer uptake with only negligible changes until 3 h post-injection. In contrast, tracer uptake by tumours increased progressively for almost all types of metastases, thus increasing tumour-to-background ratios over time. Dosimetry resulted in a total effective dose of 0.015 ± 0.004~mSv/MBq. Visual evaluation revealed no clinically relevant discrepancies between later scan times, but image quality was rated highest in 60 and 120~min images. CONCLUSION 18FSiTATE-PET/CT in NET shows overall high tumour-to-background ratios from 60 to 180~min after injection and an effective dose comparable to 68Ga-labelled alternatives. For clinical use of 18FSiTATE, the best compromise between image quality and tumour-to-background contrast is reached at 120~min, followed by 60~min after injection

    TSPO imaging using the novel PET ligand [F-18]GE-180: quantification approaches in patients with multiple sclerosis

    Get PDF
    Background: PET ligands targeting the translocator protein (TSPO) represent promising tools to visualise neuroinflammation. Here, we analysed parameters obtained in dynamic and static PET images using the novel TSPO ligand [F-18]GE-180 in patients with relapsing remitting multiple sclerosis (RRMS) and an approach for semi-quantitative assessment of this disease in clinical routine. Seventeen dynamic [F-18]GE-180 PET scans of RRMS patients were evaluated (90 min). A pseudo-reference region (PRR) was defined after identification of the least disease-affected brain area by voxel-based comparison with six healthy controls (HC) and upon exclusion of voxels suspected of being affected in static 60-90 min p.i. images. Standardised uptake value ratios (SUVR) obtained from static images normalised to PRR were correlated to the distribution volume ratios (DVR) derived from dynamic data with Logan reference tissue model. Results: Group comparison with HC revealed white matter and thalamus as most affected regions. Fewest differences were found in grey matter, and normalisation to frontal cortex (FC) yielded the greatest reduction in variability of healthy grey and white matter. Hence, FC corrected for affected voxels was chosen as PRR, leading to time-activity curves of FC which were congruent to HC data (SUV60-90 0.37, U test P = 0.42). SUVR showed a very strong correlation with DVR (Pearson rho > 0.9). Focal MS lesions exhibited a high SUVR (range, 1.3-3.2). Conclusions: This comparison with parameters from dynamic data suggests that SUVR normalised to corrected frontal cortex as PRR is suitable for the quantification of [F-18]GE-180 uptake in lesions and different brain regions of RRMS patients. This efficient diagnostic protocol based on static [F-18]GE-180 PET scans acquired 60-90 min p.i. allows the semi-quantitative assessment of neuroinflammation in RRMS patients in clinical routine
    corecore