307 research outputs found
Alpha-decay properties of superheavy elements in the relativistic mean-field theory with vector self-coupling of meson
We have investigated properties of -decay chains of recently produced
superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with
inclusion of the vector self-coupling of meson in the framework of the
relativistic mean-field theory. It is shown that the experimentally observed
alpha-decay energies and half-lives are reproduced well by this Lagrangian
model. Further calculations for the heavier elements with Z=117-125 show that
these nuclei are superdeformed with a prolate shape in the ground state. A
superdeformed shell-closure at Z=118 lends an additional binding and an extra
stability to nuclei in this region. Consequently, it is predicted that the
corresponding values provide -decay half-lives for heavier
superheavy nuclei within the experimentally feasible conditions. The results
are compared with those of macroscopic-microscopic approaches. A perspective of
the difference in shell effects amongst various approaches is presented and its
consequences on superheavy nuclei are discussed.Comment: Revised version, 14 pages, 12 eps figures. To appear in PRC.
Discussion on shell effects is shortened in the revised version. However,
commonality of the role of shell effects in extreme superheavy regions and in
the regions near the r-process path is maintained. Existence of a secondary
superdeformed minimum for Z=113 is verified with another Lagrangian se
Global ocean modeling and state estimation in support of climate research
During the last decade it has become obvious that the ocean circulation shows vigorous variability on a wide range of time and space scales and that the concept of a "sluggish" and slowly varying circulation is rather elusive. Increasing emphasis has to be put, therefore, on observing the rapidly changing ocean state on time scales ranging from weeks to decades and beyond, and on understanding the ocean's response to changing atmospheric forcing conditions. As outlined in various strategy and implementation documents (e.g., the implementation plans of WOCE, AMS, CLIVAR, and GODAE) a combination of the global ocean data sets with a state-of-the-art numerical circulation model is required to interpret the various diverse data sets and to produce the best possible estimates of the time-varying ocean circulation. The mechanism of ocean state estimates is a powerful tool for such a "synthesis" of observations, obtained on very complex space-time pattern, into one dynamically consistent picture of the global time-evolving ocean circulation. This process has much in common with ongoing analysis and reanalysis activities in the atmospheric community. But because the ocean is, and will remain for the foreseeable future, substantially under-sampled, the burden put on the modeling and estimations components is substantially larger than in the atmosphere. Moreover, the smaller dynamical eddy scales which need to be properly parameterized or resolved in ocean model simulations, put stringent requirements on computational resources for ongoing and participated climate research
Implementation of the LANS-alpha turbulence model in a primitive equation ocean model
This paper presents the first numerical implementation and tests of the
Lagrangian-averaged Navier-Stokes-alpha (LANS-alpha) turbulence model in a
primitive equation ocean model. The ocean model in which we work is the Los
Alamos Parallel Ocean Program (POP); we refer to POP and our implementation of
LANS-alpha as POP-alpha. Two versions of POP-alpha are presented: the full
POP-alpha algorithm is derived from the LANS-alpha primitive equations, but
requires a nested iteration that makes it too slow for practical simulations; a
reduced POP-alpha algorithm is proposed, which lacks the nested iteration and
is two to three times faster than the full algorithm. The reduced algorithm
does not follow from a formal derivation of the LANS-alpha model equations.
Despite this, simulations of the reduced algorithm are nearly identical to the
full algorithm, as judged by globally averaged temperature and kinetic energy,
and snapshots of temperature and velocity fields. Both POP-alpha algorithms can
run stably with longer timesteps than standard POP.
Comparison of implementations of full and reduced POP-alpha algorithms are
made within an idealized test problem that captures some aspects of the
Antarctic Circumpolar Current, a problem in which baroclinic instability is
prominent. Both POP-alpha algorithms produce statistics that resemble
higher-resolution simulations of standard POP.
A linear stability analysis shows that both the full and reduced POP-alpha
algorithms benefit from the way the LANS-alpha equations take into account the
effects of the small scales on the large. Both algorithms (1) are stable; (2)
make the Rossby Radius effectively larger; and (3) slow down Rossby and gravity
waves.Comment: Submitted to J. Computational Physics March 21, 200
Controls on Erosion in the Western Tarin Basin: Implications for the Uplift of Northwest Tibet and the Parmir
We present here bulk sediment major element chemistry, Nd and Sr isotope ratios, and detrital apatite fission-track (AFT) and U-Pb zircon ages to characterize the provenance of the southwestern Taklimakan Desert (northwest China) and the three major rivers draining this region. We establish the spatial and temporal controls on erosion and sediment transport in the modern Tibetan rain shadow. The Hotan River drains the North Kunlun block and is characterized by zircon populations at 160–230 Ma and 370–520 Ma. The Yarkand River shares these grains with the Hotan, but also has a very prominent zircon population at 40–160 Ma, which is common in Karakoram basement, indicating heavy sediment flux from these ranges to that drainage. This implies a strong control on erosion by topographic steepness and precipitation mediated through glaciation. Our zircon data confirm earlier studies that indicated that the Taklimakan sand is derived from both the Kunlun and Pamir Mountains. AFT ages are younger in the Hotan River than in the Kashgar River, which drains the Pamir, and in both are younger than in the Transhimalaya and parts of the western edge of the Tibetan Plateau. Exhumation is estimated at ∼1000 m/m.y. in the North Kunlun and ∼500 m/m.y. in the eastern Pamir, which have been exhuming more slowly than the western ranges in the recent past. Holocene aggradation terracing was dated using quartz optically stimulated luminescence methods and is mostly associated with times of fluctuating climate after 4 ka, with phases of valley filling dated at 2.6, 1.4, and 0.4 ka. The heights and volumes of the terraces show that sediment storage in the mountains is not a significant buffer to sediment transport, in contrast to the more monsoonal Indus system directly to the south. South of the Mazatag Ridge a significant eolian deposit accumulated ∼500 yr ago, but this has been deflated in more recent times. Comparison of the modern river data with those previously measured from Cenozoic foreland sedimentary rocks shows that no sediment similar to that of the modern Yarkand River is seen in the geologic record, which is inferred to be younger than 11 Ma, and probably much less. Uplift of the North Kunlun had started by ca. 17 Ma, somewhat after that of the Pamir and Songpan Garze of northwestern Tibet, dated to before 24 Ma. Sediment from the Kunlun reached the foreland basin between 14 and 11 Ma. North Kunlun exhumation accelerated before 3.7 Ma, likely linked to faster rock uplift
Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics
Highlights:
• We combine high-resolution ocean models with population genetics
• Variation in wind-driven ocean currents mediates the collapse of A. anguilla
• Female eels are philopatric within the Sargasso Sea, while males maintain gene flow
• We present first evidence of the role of ocean currents in shaping species’ evolution
Summary:
Worldwide, exploited marine fish stocks are under threat of collapse [1]. Although the drivers behind such collapses are diverse, it is becoming evident that failure to consider evolutionary processes in fisheries management can have drastic consequences on a species’ long-term viability [2]. The European eel (Anguilla anguilla; Linnaeus, 1758) is no exception: not only does the steep decline in recruitment observed in the 1980s [ 3 and 4] remain largely unexplained, the punctual detection of genetic structure also raises questions regarding the existence of a single panmictic population [ 5, 6 and 7]. With its extended Transatlantic dispersal, pinpointing the role of ocean dynamics is crucial to understand both the population structure and the widespread decline of this species. Hence, we combined dispersal simulations using a half century of high-resolution ocean model data with population genetics tools. We show that regional atmospherically driven ocean current variations in the Sargasso Sea were the major driver of the onset of the sharp decline in eel recruitment in the beginning of the 1980s. The simulations combined with genotyping of natural coastal eel populations furthermore suggest that unexpected evidence of coastal genetic differentiation is consistent with cryptic female philopatric behavior within the Sargasso Sea. Such results demonstrate the key constraint of the variable oceanic environment on the European eel population
Imaging foreign bodies in head and neck trauma: a pictorial review
Open injuries bear the risk of foreign body contamination. Commonly encountered materials include gravel debris, glass fragments, wooden splinters or metal particles. While foreign body incorporation is obvious in some injury patterns, other injuries may not display hints of being contaminated with foreign body materials. Foreign objects that have not been detected and removed bear the risk of leading to severe wound infections and chronic wound healing disorders. Besides these severe health issues, medicolegal consequences should be considered. While an accurate clinical examination is the first step for the detection of foreign body materials, choosing the appropriate radiological imaging is decisive for the detection or non-detection of the foreign material. Especially in cases of impaired wound healing over time, the existence of an undetected foreign object needs to be considered. Here, we would like to give a practical radiological guide for the assessment of foreign objects in head and neck injuries by a special selection of patients with different injury patterns and various foreign body materials with regard to the present literature
Spatial and Temporal Scales of Sverdrup Balance
Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales
Circulation characteristics in three eddy-permitting models of the North Atlantic
A systematic intercomparison of three realistic eddy-permitting models of the North Atlantic circulation has been performed. The models use different concepts for the discretization of the vertical coordinate, namely geopotential levels, isopycnal layers, terrain-following (sigma) coordinates, respectively. Although these models were integrated under nearly identical conditions, the resulting large-scale model circulations show substantial differences. The results demonstrate that the large-scale thermohaline circulation is very sensitive to the model representation of certain localised processes, in particular to the amount and water
mass properties of the overflow across the Greenland-Scotland region, to the amount of mixing within a few hundred kilometers south of the sills, and to several other processes at small or sub-grid scales. The different behaviour of the three models can to a large extent be explained as a consequence of the different
model representation of these processes
- …