9 research outputs found

    How Do Energies Complexify?

    Get PDF
    Some particular properties of the parametric dependence of eigenvalues with emphasis on their complexification are discussed. The non-diagonalisability of PT-symmetric matrix Hamiltonians in exceptional points is compared with level-crossing prohibition of Hermitian systems. For non-matrix Hamiltonians, the different way of complexification between Klein-Gordon and Dirac Hamiltonians is demonstrated.

    Comment on `Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry' [J. Y. Guo and Z-Q. Sheng, Phys. Lett. A 338 (2005) 90]

    Full text link
    Out of the four bound-state solutions presented in loc. cit., only one (viz., the spin-symmetric one, in the low-mass regime) is shown compatible with the physical boundary conditions. We clarify the problem, correct the method and offer another, "missing" (viz., pseudospin-symmetric) new solution with certain counterintuitive "repulsion-generated" property.Comment: 6 p

    Quantum Big Bang without fine-tuning in a toy-model

    Full text link
    The question of possible physics before Big Bang (or after Big Crunch) is addressed via a schematic non-covariant simulation of the loss of observability of the Universe. Our model is drastically simplified by the reduction of its degrees of freedom to the mere finite number. The Hilbert space of states is then allowed time-dependent and singular at the critical time t=tct=t_c. This option circumvents several traditional theoretical difficulties in a way illustrated via solvable examples. In particular, the unitary evolution of our toy-model quantum Universe is shown interruptible, without any fine-tuning, at the instant of its bang or collapse t=tct= t_c.Comment: 20 pp., 1 fig., invited talk for the conference "10th Workshop on Quantization, Dualities and Integrable Systems" (April 22 - 24, 2011), http://qdis.emu.edu.tr/index.htm

    Level Crossings in Complex Two-Dimensional Potentials

    Full text link
    Two-dimensional PT-symmetric quantum-mechanical systems with the complex cubic potential V_{12}=x^2+y^2+igxy^2 and the complex Henon-Heiles potential V_{HH}=x^2+y^2+ig(xy^2-x^3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the PT symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.Comment: 9 pages, 4 figures. Submitted as a conference proceeding of PHHQP

    Closed formula for the metric in the Hilbert space of a PT-symmetric model

    Full text link
    We introduce a very simple, exactly solvable PT-symmetric non-Hermitian model with real spectrum, and derive a closed formula for the metric operator which relates the problem to a Hermitian one.Comment: LaTeX, 13 pages; to appear in Journal of Physics

    Quadratic pseudosupersymmetry in two-level systems

    Full text link
    Using the intertwining relation we construct a pseudosuperpartner for a (non-Hermitian) Dirac-like Hamiltonian describing a two-level system interacting in the rotating wave approximation with the electric component of an electromagnetic field. The two pseudosuperpartners and pseudosupersymmetry generators close a quadratic pseudosuperalgebra. A class of time dependent electric fields for which the equation of motion for a two level system placed in this field can be solved exactly is obtained. New interesting phenomenon is observed. There exists such a time-dependent detuning of the field frequency from the resonance value that the probability to populate the excited level ceases to oscillate and becomes a monotonically growing function of time tending to 3/4. It is shown that near this fixed excitation regime the probability exhibits two kinds of oscillations. The oscillations with a small amplitude and a frequency close to the Rabi frequency (fast oscillations) take place at the background of the ones with a big amplitude and a small frequency (slow oscillations). During the period of slow oscillations the minimal value of the probability to populate the excited level may exceed 1/2 suggesting for an ensemble of such two-level atoms the possibility to acquire the inverse population and exhibit lasing properties.Comment: 5 figure
    corecore