388 research outputs found
Phase instabilities in hexagonal patterns
The general form of the amplitude equations for a hexagonal pattern including
spatial terms is discussed. At the lowest order we obtain the phase equation
for such patterns. The general expression of the diffusion coefficients is
given and the contributions of the new spatial terms are analysed in this
paper. From these coefficients the phase stability regions in a hexagonal
pattern are determined. In the case of Benard-Marangoni instability our results
agree qualitatively with numerical simulations performed recently.Comment: 6 pages, 6 figures, to appear in Europhys. Let
Transition between Two Oscillation Modes
A model for the symmetric coupling of two self-oscillators is presented. The
nonlinearities cause the system to vibrate in two modes of different
symmetries. The transition between these two regimes of oscillation can occur
by two different scenarios. This might model the release of vortices behind
circular cylinders with a possible transition from a symmetric to an
antisymmetric Benard-von Karman vortex street.Comment: 12 pages, 0 figure
Resonant interactions in B\'{e}nard-Marangoni convection in cylindrical containers
Convection in a cylindrical container of small aspect ratio is studied. It is
known that when, in addition to buoyancy forces, thermocapillarity effects are
taken into account, resonant interactions of two modes may appear. In the case
of 1:2 resonance amplitude equations are derived, showing the existence of a
stable heteroclinic orbit and rotating waves, until now not observed
experimentally.Comment: 33 pages, latex, 14 figures, epsfig macro included. To appear in
Physica
Rhombic Patterns: Broken Hexagonal Symmetry
Landau-Ginzburg equations derived to conserve two-dimensional spatial symmetries lead to the prediction that rhombic arrays with characteristic angles slightly differ from 60 degrees should form in many systems. Beyond the bifurcation from the uniform state to patterns, rhombic patterns are linearly stable for a band of angles near the 60 degrees angle of regular hexagons. Experiments conducted on a reaction-diffusion system involving a chlorite-iodide-malonic acid reaction yield rhombic patterns in good accord with the theory.Energy Laboratory of the University of HoustonOffice of Naval ResearchU.S. Department of Energy Office of Basic Energy SciencesRobert A. Welch FoundationCenter for Nonlinear Dynamic
Ongoing evolution of Chlamydia trachomatis lymphogranuloma venereum: exploring the genomic diversity of circulating strains
Epidemiología molecular; Presión selectiva; Infecciones de transmisión sexualMolecular epidemiology; Selective pressure; Sexually transmitted infectionsEpidemiologia molecular; Pressió selectiva; Infeccions de transmissió sexualLymphogranuloma venereum (LGV), the invasive infection of the sexually transmissible infection (STI) Chlamydia trachomatis , is caused by strains from the LGV biovar, most commonly represented by ompA-genotypes L2b and L2. We investigated the diversity in LGV samples across an international collection over seven years using typing and genome sequencing. LGV-positive samples (n=321) from eight countries collected between 2011 and 2017 (Spain n=97, Netherlands n=67, Switzerland n=64, Australia n=53, Sweden n=37, Hungary n=31, Czechia n=30, Slovenia n=10) were genotyped for pmpH and ompA variants. All were found to contain the 9 bp insertion in the pmpH gene, previously associated with ompA-genotype L2b. However, analysis of the ompA gene shows ompA-genotype L2b (n=83), ompA-genotype L2 (n=180) and several variants of these (n=52; 12 variant types), as well as other/mixed ompA-genotypes (n=6). To elucidate the genomic diversity, whole genome sequencing (WGS) was performed from selected samples using SureSelect target enrichment, resulting in 42 genomes, covering a diversity of ompA-genotypes and representing most of the countries sampled. A phylogeny of these data clearly shows that these ompA-genotypes derive from an ompA-genotype L2b ancestor, carrying up to eight SNPs per isolate. SNPs within ompA are overrepresented among genomic changes in these samples, each of which results in an amino acid change in the variable domains of OmpA (major outer membrane protein, MOMP). A reversion to ompA-genotype L2 with the L2b genomic backbone is commonly seen. The wide diversity of ompA-genotypes found in these recent LGV samples indicates that this gene is under immunological selection. Our results suggest that the ompA-genotype L2b genomic backbone is the dominant strain circulating and evolving particularly in men who have sex with men (MSM) populations.J.C.G. was supported by the Instituto de Salud Carlos III (Plan Estatal de I+D+ i 2013–2016), Grant PI16-01242
Onset of Surface-Tension-Driven Benard Convection
Experiments with shadowgraph visualization reveal a subcritical transition to
a hexagonal convection pattern in thin liquid layers that have a free upper
surface and are heated from below. The measured critical Marangoni number (84)
and observation of hysteresis (3%) agree with theory. In some experiments,
imperfect bifurcation is observed and is attributed to deterministic forcing
caused in part by the lateral boundaries in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The
appropriate style is "mypprint" which is the defaul
Long-Wavelength Instability in Surface-Tension-Driven Benard Convection
Laboratory studies reveal a deformational instability that leads to a drained
region (dry spot) in an initially flat liquid layer (with a free upper surface)
heated uniformly from below. This long-wavelength instability supplants
hexagonal convection cells as the primary instability in viscous liquid layers
that are sufficiently thin or are in microgravity. The instability occurs at a
temperature gradient 34% smaller than predicted by linear stability theory.
Numerical simulations show a drained region qualitatively similar to that seen
in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The
appropriate style is "mypprint" which is the defaul
Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background
In this paper we study the effect of next-nearest-neighbor hopping on the
dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the
framework of large dimensions the Green function of a hole can be obtained
exactly. The exact density of states of a hole is thus calculated in large
dimensions and on a Bethe lattice with large coordination number. We suggest a
physically motivated generalization to finite dimensions (e.g., 2 and 3). In
we present also the momentum dependent spectral function. With varying
degree, depending on the underlying lattice involved, the discrete spectrum for
holes is replaced by a continuum background and a few resonances at the low
energy end. The latter are the remanents of the bound states of the
model. Their behavior is still largely governed by the parameters and .
The continuum excitations are more sensitive to the energy scales and
.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on
request from [email protected]
Key aerodynamic technologies for aircraft engine nacelles
Customer requirements and vision in aerospace dictate that the next generation of civil transport aircraft should have a strong emphasis on increased safety, reduced environmental impact and reduced cost without sacrificing performance. In this context, the School of Mechanical and Aerospace Engineering at the Queen's University of Belfast and Bombardier have, in recent years, been conducting research into some of the key aerodynamic technologies for the next generation of aircraft engine nacelles. Investigations have been performed into anti-icing technology, efficient thrust reversal, engine fire zone safety, life cycle cost and integration of the foregoing with other considerations in engine and aircraft design. A unique correlation for heat transfer in an anti-icing system has been developed. The effect of normal vibration on heat transfer in such systems has been found to be negligible. It has been shown that carefully designed natural blockage thrust reversers without a cascade can reduce aircraft weight with only a small sacrifice in the reversed thrust. A good understanding of the pressure relief doors and techniques to improve the performance of such doors have been developed. Trade off studies between aerodynamics, manufacturing and assembly of engine nacelles have shown the potential for a significant reduction in life cycle cost
- …