605 research outputs found

    MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens

    Get PDF
    MSH2 is a central component of the mismatch repair pathway that targets mismatches arising during DNA replication, homologous recombination (HR) and in response to genotoxic stresses. Here, we describe the function of MSH2 in the moss Physcomitrella patens, as deciphered by the analysis of loss of function mutants. Ppmsh2 mutants display pleiotropic growth and developmental defects, which reflect genomic instability. Based on loss of function of the APT gene, we estimated this mutator phenotype to be at least 130 times higher in the mutants than in wild type. We also found that MSH2 is involved in some but not all the moss responses to genotoxic stresses we tested. Indeed, the Ppmsh2 mutants were more tolerant to cisplatin and show higher sensitivity to UV-B radiations. PpMSH2 gene involvement in HR was studied by assessing gene targeting (GT) efficiency with homologous and homeologous sequences. GT efficiency with homologous sequences was slightly decreased in the Ppmsh2 mutant compared with wild type. Strikingly GT efficiency with homeologous sequences decreased proportionally to sequence divergence in the wild type whereas it remained unaffected in the mutants. Those results demonstrate the role of PpMSH2 in the maintenance of genome integrity and in homologous and homeologous recombinatio

    Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    Get PDF
    Accepted manuscript version. Published version available at https://doi.org/10.1016/j.csr.2008.02.002. Licensed CC BY-NC-ND 4.0.Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998–April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×106 t y−1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×109 t y−1). However the net resuspension (erosion/deposition budget) for trawling (0.4×106 t y−1) was only one order of magnitude lower than that for waves and currents (9.2×106 t y−1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4×106 t y−1) was one order of magnitude lower than export associated with natural resuspension (8.5×106 t y−1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.</p

    Magnetotransport properties of a single grain boundary in a bulk La-Ca-Mn-O material

    Full text link
    peer reviewedBesides the "intrinsic" colossal magnetoresistance effect observed in single crystals, the polycrystalline manganate compounds also exhibit an "extrinsic" magnetoresistance related to the presence of grain boundaries. We report electrical transport and magnetic measurements carried out on a bigrain sample extracted from a floating zone method-grown rod of calcium doped lanthanum manganate. Electrical resistance was measured both within a grain and across the grain boundary, between 20 and 300 K and from 0 to 8 T. Magnetoresistance values up to 99% are reached within the grain. The temperature dependence of the resistance across the grain boundary displays a "foot-like" feature towards the bottom of the transition. Low field and high field magnetoresistance effects are examined. We compare our results for a "bulk" grain boundary to those obtained by other authors for bicrystal thin films and bulk polycrystalline materials. (C) 2001 American Institute of Physics

    The tricellular vertex-specific adhesion molecule Sidekick facilitates polarised cell intercalation during Drosophila axis extension.

    Get PDF
    In epithelia, tricellular vertices are emerging as important sites for the regulation of epithelial integrity and function. Compared to bicellular contacts, however, much less is known. In particular, resident proteins at tricellular vertices were identified only at occluding junctions, with none known at adherens junctions (AJs). In a previous study, we discovered that in Drosophila embryos, the adhesion molecule Sidekick (Sdk), well-known in invertebrates and vertebrates for its role in the visual system, localises at tricellular vertices at the level of AJs. Here, we survey a wide range of Drosophila epithelia and establish that Sdk is a resident protein at tricellular AJs (tAJs), the first of its kind. Clonal analysis showed that two cells, rather than three cells, contributing Sdk are sufficient for tAJ localisation. Super-resolution imaging using structured illumination reveals that Sdk proteins form string-like structures at vertices. Postulating that Sdk may have a role in epithelia where AJs are actively remodelled, we analysed the phenotype of sdk null mutant embryos during Drosophila axis extension using quantitative methods. We find that apical cell shapes are abnormal in sdk mutants, suggesting a defect in tissue remodelling during convergence and extension. Moreover, adhesion at apical vertices is compromised in rearranging cells, with apical tears in the cortex forming and persisting throughout axis extension, especially at the centres of rosettes. Finally, we show that polarised cell intercalation is decreased in sdk mutants. Mathematical modelling of the cell behaviours supports the notion that the T1 transitions of polarised cell intercalation are delayed in sdk mutants, in particular in rosettes. We propose that this delay, in combination with a change in the mechanical properties of the converging and extending tissue, causes the abnormal apical cell shapes in sdk mutant embryos
    corecore