3 research outputs found

    A copper diimine‐based honeycomb‐like porous network as an efficient reduction catalyst

    Get PDF
    Nitrophenols are among the widely used industrial chemicals worldwide; however, their hazardous effects on environment are a major concern nowadays. Therefore, the conversion of environmentally detrimental p‐nitrophenol (PNP) to industrially valuable p‐aminophenol (PAP), a prototype reaction, is an important organic transformation reaction. However, the traditional conversion of PNP to PAP is an expensive and environmentally unfriendly process. Here, we report a honeycomb‐like porous network with zeolite‐like channels formed by the self‐organization of copper, 1,10‐phenanthroline, 4,4â€Č‐bipyridine, and water. This porous network effectively catalyzed the transformation of hazardous PNP to pharmaceutically valued PAP. In the presence of complex, PNP to PAP conversion occurred in a few minutes, which is otherwise a very sluggish process. To assess the kinetics, the catalytic conversion of PNP to PAP was studied at five different temperatures. The linearity of lnCt/Co versus temperature plot indicated pseudo‐first‐order kinetics. The copper complex with zeolite like channels may find applications as a reduction catalyst both on laboratory and industrial scales and in green chemistry for the remediation of pollutants
    corecore