3 research outputs found

    Activity level and aggregation behavior in the crustacean gammarid Gammarus insensibilis parasitized by the manipulative trematode Microphallus papillorobustus

    No full text
    International audienceHosts manipulated by parasites are profoundly altered organisms exhibiting a broad range of potential modifications. Exploring this multidimensionality is an emerging field. Previous studies have shown that the bird trematode Microphallus papillorobustus induces several behavioral changes in the gammarid Gammarus insensibilis. Knowing that aggregation behavior and reduced activity levels are strategies that limit predation in other species of amphipods, we explored in this study these behavioral responses for infected and uninfected G. insensibilis in the presence of host and non-host predator olfactory cues (bird feces and fish mucus). While uninfected individuals reduced their activity level in the presence of predator cues, infected individuals did not change their activity level in presence of aquatic bird feces. We also studied the gammarid aggregation behavior. Uninfected gammarids in clean water spent significantly more time in aggregates than did infected individuals. Among the uninfected individuals, the aggregation level tended to increase when bird feces and fish mucus were added, but the difference was not significant. Among infected individuals, the level of aggregation was significantly increased only with the bird feces. We discussed our results in the context of the literature on multidimensional manipulations, acknowledging that subtle differences between unparasitized and parasitized gammarids can also be by-products of manipulation on other traits

    Transcriptome variation in response to gastrointestinal nematode infection in goats

    No full text
    Gastrointestinal nematodes (GIN) are a major constraint for small ruminant production. Due to the rise of anthelmintic resistance throughout the world, alternative control strategies are needed. The development of GIN resistance breeding programs is a promising strategy. However, a better understanding of the mechanisms underlying genetic resistance might lead to more effective breeding programmes. In this study, we compare transcriptome profiling of abomasal mucosa and lymph node tissues from non-infected, resistant and susceptible infected Creole goats using RNA-sequencing. A total of 24 kids, 12 susceptible and 12 GIN resistant based on the estimated breeding value, were infected twice with 10,000 L3 Haemonchus contortus. Physiological and parasitological parameters were monitored during infection. Seven weeks after the second infection, extreme kids (n = 6 resistant and 6 susceptible), chosen on the basis of the fecal egg counts (FEC), and 3 uninfected control animals were slaughtered. Susceptible kids had significantly higher FEC compared with resistant kids during the second infection with no differences in worm burden, male and female worm count or establishment rate. A higher number of differentially expressed genes (DEG) were identified in infected compared with non-infected animals in both abomasal mucosa (792 DEG) and lymph nodes (1726 DEG). There were fewer DEG in resistant versus susceptible groups (342 and 450 DEG, in abomasal mucosa and lymph nodes respectively). 'Cell cycle' and 'cell death and survival' were the main identified networks in mucosal tissue when comparing infected versus non-infected kids. Antigen processing and presentation of peptide antigen via major histocompatibility complex class I were in the top biological functions for the DEG identified in lymph nodes. The TGF beta 1 gene was one of the top 5 upstream DEG in mucosal tissue. Our results are one of the fist investigating differences in the expression profile induced by GIN infection in goats
    corecore