6 research outputs found

    Baseline integrase drug resistance mutations and conserved regions across HIV-1 clades in Cameroon: implications for transition to dolutegravir in resource-limited settings

    Get PDF
    Background: Transition to dolutegravir-based regimens in resource-limited settings (RLS) requires prior understanding of HIV-1 integrase variants and conserved regions. Therefore, we evaluated integrase drug resistance mutations (DRMs) and conserved regions amongst integrase strand transfer inhibitor (INSTI)-naive patients harbouring diverse HIV-1 clades in Cameroon. Methods: A cross-sectional study was conducted amongst 918 INSTI-naive patients from Cameroon (89 ART-naive and 829 ART-experienced patients). HIV-1 sequences were interpreted regarding INSTI-DRMs using the Stanford HIVdb v8.9-1 and the 2019 IAS-USA list. Amino acid positions with <1% variability were considered as highly conserved. Subtyping was performed by phylogeny. Results: Overall prevalence (95% CI) of INSTI-DRMs was 0.8% (0.4-1.7), with 0.0% (0.0-4.0) amongst ART-naive versus 0.9% (0.5-1.9) amongst ART-experienced patients; P = 0.44. Accessory mutations (95% CI) were found in 33.8% (30.9-37.0), with 38.2% (28.1-49.1) amongst ART-naive versus 33.4% (30.4-36.7) amongst ART-experienced patients; P = 0.21. Of 288 HIV-1 integrase amino acid positions, 58.3% were highly conserved across subtypes in the following major regions: V75-G82, E85-P90, H114-G118, K127-W132, E138-G149, Q168-L172, T174-V180, W235-A239 and L241-D253. Wide genetic diversity was found (37 clades), including groups M (92.3%), N (1.4%), O (6.2%) and P (0.1%). Amongst group M, CRF02_AG was predominant (47.4%), with a significantly higher frequency (95% CI) of accessory mutations compared with non-AG [41.4% (36.8-46.0) versus 27.1% (23.3-31.2) respectively; P < 0.001]. Conclusions: The low baseline of INSTI-DRMs (<1%) in Cameroon suggests effectiveness of dolutegravir-based regimens. In spite of high conservation across clades, the variability of accessory mutations between major circulating strains underscores the need for monitoring the selection of INSTI-DRMs while scaling up dolutegravir-based regimens in RLS

    Host molecular factors and viral genotypes in the mother-to-child HIV-1 transmission in sub-Saharan Africa

    No full text
    Maternal viral load and immune status, timing and route of delivery, viral subtype, and host genetics are known to influence the transmission, acquisition and disease progression of human immunodeficiency virus-1 (HIV-1) infection. This review summarizes the findings from published works on host molecular factors and virus genotypes affecting mother to child transmission (MTCT) in Africa and identifies the gaps that need to be addressed in future research. Articles in PubMed, Google and AIDSearch and relevant conference abstracts publications were searched. Accessible articles on host factors and viral genetics impacting the MTCT of HIV, done on African populations till 2015 were downloaded. Forty-six articles were found and accessed; 70% described host genes impacting the transmission. The most studied gene was the CCR5 promoter, followed by the CCR2-64I found to reduce MTCT; then SDF1-3’A shown to have no effect on MTCT and others like the DC-SIGNR, CD4, CCL3 and IP- 10. The HLA class I was most studied and was generally linked to the protective effect on MTCT. Breast milk constituents were associated to protection against MTCT. However, existing studies in Sub Saharan Africa were done just in few countries and some done without control groups. Contradictory results obtained may be due to different genetic background, type of controls, different socio-cultural and economic environment and population size. More studies are thus needed to better understand the mechanism of transmission or prevention

    Detection of Gag C-terminal mutations among HIV-1 non-B subtypes in a subset of Cameroonian patients

    No full text
    : Response to ritonavir-boosted-protease inhibitors (PI/r)-based regimen is associated with some Gag mutations among HIV-1 B-clade. There is limited data on Gag mutations and their covariation with mutations in protease among HIV-1 non-B-clades at PI/r-based treatment failure. Thus, we characterized Gag mutations present in isolates from HIV-1 infected individuals treated with a PI/r-regimen (n = 143) and compared them with those obtained from individuals not treated with PI/r (ART-naïve [n = 101] or reverse transcriptase inhibitors (RTI) treated [n = 118]). The most frequent HIV-1 subtypes were CRF02_AG (54.69%), A (13.53%), D (6.35%) and G (4.69%). Eighteen Gag mutations showed a significantly higher prevalence in PI/r-treated isolates compared to ART-naïve (p < 0.05): Group 1 (prevalence < 1% in drug-naïve): L449F, D480N, L483Q, Y484P, T487V; group 2 (prevalence 1-5% in drug-naïve): S462L, I479G, I479K, D480E; group 3 (prevalence ≥ 5% in drug-naïve): P453L, E460A, R464G, S465F, V467E, Q474P, I479R, E482G, T487A. Five Gag mutations (L449F, P453L, D480E, S465F, Y484P) positively correlated (Phi ≥ 0.2, p < 0.05) with protease-resistance mutations. At PI/r-failure, no significant difference was observed between patients with and without these associated Gag mutations in term of viremia or CD4 count. This analysis suggests that some Gag mutations show an increased frequency in patients failing PIs among HIV-1 non-B clades

    Evaluation of HIV-1 capsid genetic variability and lenacapavir (GS-6207) drug resistance-associated mutations according to viral clades among drug-naive individuals

    No full text
    Objectives We evaluated the HIV-1 capsid genetic variability and lenacapavir drug resistance-associated mutations (DRMs) among drug-naive individuals across HIV-1 clades. Methods A total of 2031 HIV-1 sequences from drug-naive patients were analysed for capsid amino acid modification and the prevalence of lenacapavir DRMs. Amino acid positions with Results Overall, 63% (148/232) of amino acid positions were conserved in the capsid protein. Of note, conservation was consistent in specific binding residues of cellular factors involved in viral replication [CypA (G89, P90), CPSF6 (Q4, N57, N74, A77, K182) and TRIM-NUP153 (R143)], while N183 (12.31%) was the only non-conserved lenacapavir binding residue. The overall prevalence (95% CI) of lenacapavir DRMs was 0.14% (0.05-0.44) (3/2031), with M66I (0.05%) and Q67H (0.05%) observed in subtype C, and T107N (0.05%) observed in CRF01_AE. Moreover, polymorphic mutations M66C (n = 85; 4.18%), Q67K (n = 78; 3.84%), K70R (n = 7; 0.34%), N74R (n = 57; 2.81%) and T107L (n = 82; 4.03%) were observed at lenacapavir resistance-associated positions. Conclusions The low level of lenacapavir DRMs (<1%) supports its predicted effectiveness for treatment and prevention, regardless of HIV-1 clades. The established conserved regions hence serve as a hallmark for the surveillance of novel mutations potentially relevant for lenacapavir resistance

    High performance of integrase genotyping on diverse HIV-1 clades circulating in Cameroon: toward a successful transition to dolutegravir-based regimens in low and middle-income countries

    No full text
    : A successful transition to dolutegravir-based regimens in low and middle-income countries (LMICs) requires an integrase genotyping assay effective on diverse HIV-1 clades. We herein developed and validated an in-house integrase genotyping protocol on plasma samples from 195 HIV-infected patients in Cameroon. Median [IQR] viremia was 23,574 (518-109,235) copies/mL; 128/195 participants had ≥1000copies/mL (i.e., WHO-threshold for genotypic resistance testing in LMICs). A total of 18 viral clades were detected: 72(51.1%) CRF02_AG, 38(26.9%) pure subtypes and 31(22.0%) other recombinants. Following WHO-threshold (≥1000copies/ml), sequencing performance was 82.81%(106/128). Regarding viremia, performance was 85.00%(68/80) with ≥100,000copies/mL versus 76.67%(23/30) with 10,000 to 99,999copies/mL (P = 0.22); 83.33%(15/18) with 1,000 to 99,999copies/mL (P = 0.55); 73.68%(14/19) with 500 to 999copies/mL (P = 0.19); 50%(13/26) for 200 to 499copies/mL (P = 0.0005) and 36.36%(8/22) for <200copies/mL (P < 0.0001). The developed in-house integrase-genotyping is highly effective on both pure and recombinant viral clades, even at low-level viremia. This performance underscores its usefulness in monitoring integrase-resistance mutations and supporting the scale-up of dolutegravir-based regimens in LMICs
    corecore