53 research outputs found

    Coupled CDW and SDW Fluctuations as an Origin of Anomalous Properties of Ferromagnetic Superconductor UGe_2

    Full text link
    It is shown that anomalous properties of UGe_2 can be understood in a unified way on the basis of a single assumption that the superconductivity is mediated by the coupled SDW and CDW fluctuations induced by the imperfect nesting of the Fermi surface with majority spins at T=T_x(P) deep in the ferromagnetic phase. Excess growth of uniform magnetization is shown to develop in the temperature range T<T_x(P) as a mode-coupling effect of coupled growth of SDW and CDW orderings, which has been observed by two different types of experiments. The coupled CDW and SDW fluctuations are shown to be essentially ferromagnetic spin fluctuations which induce a spin-triplet p-wave attraction. These fluctuations consist of two modes, spin and charge fluctuations with large momentum transfer of the nesting vector. An anomalous temperature dependence of the upper critical field H_c2(T) such as crossing of H_c2(T) at P=11.4 kbar and P=13.5 kbar, can be understood by the strong-coupling-superconductivity formalism. Temperature dependence of the lattice specific heat including a large shoulder near T_x is also explained quite well as an effect of a kind of Kohn anomaly associated with coupled SDW-CDW transition.Comment: (12 pages, 10 eps figures) submitted to J. Phys. Soc. Jp

    Electronic states on a twin boundary of a d-wave superconductor

    Full text link
    We show that an induced ss-wave harmonic in the superconducting gap of an orthorhombic dx2y2d_{x^2-y^2} superconductor strongly affects the excitation spectrum near a twinning plane. In particular, it yields bound states of zero energy with areal density proportional to the relative weight of the ss-wave component. An unusual scattering process responsible for the thermal conductivity across the twin boundary at low temperatures is also identified.Comment: 4 pages, ReVTEX, 2 PS-figure

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    Superconducting gap node spectroscopy using nonlinear electrodynamics

    Full text link
    We present a method to determine the nodal structure of the energy gap of unconventional superconductors such as high TcT_c materials. We show how nonlinear electrodynamics phenomena in the Meissner regime, arising from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero, can be used to perform ``node spectroscopy'', that is, as a sensitive bulk probe to locate the angular position of those lines. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and aba-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+sd+s and s+ids+id). We consider, as suggested by various experiments, order parameters with predominantly dd-wave character, and describe how to determine the possible presence of other symmetries. The nonlinear magnetic moment displays a distinct behavior if nodes in the gap are absent but regions with small, finite, values of the energy gap exist.Comment: 18 pages, Revtex, 9 postscript figures. Submitted to Phys. Rev

    Effective-field-theory approach to persistent currents

    Full text link
    Using an effective-field-theory (nonlinear sigma model) description of interacting electrons in a disordered metal ring enclosing magnetic flux, we calculate the moments of the persistent current distribution, in terms of interacting Goldstone modes (diffusons and cooperons). At the lowest or Gaussian order we reproduce well-known results for the average current and its variance that were originally obtained using diagrammatic perturbation theory. At this level of approximation the current distribution can be shown to be strictly Gaussian. The nonlinear sigma model provides a systematic way of calculating higher-order contributions to the current moments. An explicit calculation for the average current of the first term beyond Gaussian order shows that it is small compared to the Gaussian result; an order-of-magnitude estimation indicates that the same is true for all higher-order contributions to the average current and its variance. We therefore conclude that the experimentally observed magnitude of persistent currents cannot be explained in terms of interacting diffusons and cooperons.Comment: 12 pages, no figures, final version as publishe

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure

    Anisotropic three-dimentional magnetic fluctuations in heavy fermion CeRhIn5

    Full text link
    CeRhIn5 is a heavy fermion antiferromagnet that orders at 3.8 K. The observation of pressure-induced superconductivity in CeRhIn5 at a very high Tc of 2.1 K for heavy fermion materials has led to speculations regarding to its magnetic fluctuation spectrum. Using magnetic neutron scattering, we report anisotropic three-dimensional antiferromagnetic fluctuations with an energy scale of less than 1.7 meV for temperatures as high as 3Tc. In addition, the effect of the magnetic fluctuations on electrical resistivity is well described by the Born approximation.Comment: 4 pages, 4 figure

    Ferromagnetism and Canted Spin Phase in AlAs/GaMnAs Single Quantum Wells: Monte Carlo Simulation

    Full text link
    The magnetic order resulting from a confinement-adapted Ruderman-Kittel-Kasuya-Yosida indirect exchange between magnetic moments in the metallic phase of a AlAs/Ga(1-x)Mn(x)As quantum well is studied by Monte Carlo simulation. This coupling mechanism involves magnetic moments and carriers (holes), both coming from the same Mn(2+) ions. It leads to a paramagnetic, a ferromagnetic, or a canted spin phase, depending on the carrier concentration, and on the magnetic layer width. It is shown that high transition temperatures may be obtained.Comment: 7 figure

    Effect of anisotropic impurity scattering in superconductors

    Full text link
    We discuss the weak-coupling BCS theory of a superconductor with the impurities, accounting for their anisotropic momentum-dependent potential. The impurity scattering process is considered in the t-matrix approximation and its influence on the superconducting critical temperature is studied in the Born and unitary limit for a d- and (d+s)-wave superconductors. We observe a significant dependence of the pair-breaking strength on the symmetry of the scattering potential and classify the impurity potentials according to their ability to alter T_c. A good agreement with the experimental data for Zn doping and oxygen irradiation in the overdoped cuprates is found.Comment: 31 pages, RevTex, 15 PostScript figure

    Tomography of pairing symmetry from magnetotunneling spectroscopy -- a case study for quasi-1D organic superconductors

    Full text link
    We propose that anisotropic pp-, dd-, or ff-wave pairing symmetries can be distinguished from a tunneling spectroscopy in the presence of magnetic fields, which is exemplified here for a model organic superconductor (TMTSF)2X{(TMTSF)}_{2}X. The shape of the Fermi surface (quasi-one-dimensional in this example) affects sensitively the pairing symmetry, which in turn affects the shape (U or V) of the gap along with the presence/absence of the zero-bias peak in the tunneling in a subtle manner. Yet, an application of a magnetic field enables us to identify the symmetry, which is interpreted as an effect of the Doppler shift in Andreev bound states.Comment: 4 papegs, 4 figure
    corecore