18 research outputs found

    Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement.

    No full text
    Shigella flexneri uses elements of the host cell cytoskeleton to move within cells and from cell to cell. IcsA, an S. flexneri protein involved in this movement, was purified and studied in vitro. IcsA bound the radiolabelled ATP analog 3'(2')-O-(4-benzoyl)benzoyl-ATP and hydrolyzed ATP. In addition, the surface localization of IcsA on both extracellular and intracellular shigellae was unipolar. Further, in HeLa cells infected with shigellae, IcsA antiserum labelled the actin tail throughout its length, thereby suggesting that IcsA interacts with elements within the tail. Localization of IcsA within the tail at a distance from the bacterium would require its secretion; we demonstrate here that in vitro IcsA is secreted into the culture supernatant in a cleaved form

    1H and 15N NMR characterization of free and bound states of an amphiphilic peptide interacting with calmodulin.

    No full text
    International audienceA peptide of 17 amino acid residues Ac-L-K-W-K-K-L-L-K-L-L-K-K-L-L-K-L-G-NH2, designed to form an amphiphilic basic alpha-helix [DeGrado, W.F., Prendergast, F. G., Wolfe, H. R., Jr., & Cox, J. A. (1985) J. Cell. Biochem. 29, 83-93], was labeled with 15N at positions 1, 7, 9, and 10. Homo- and heteronuclear NMR techniques were used to characterize the conformational changes of the peptide when it binds to calmodulin in the presence of Ca2+ ions. The spectrum of the free peptide in aqueous solution at pH 6.3 and 298 K was completely assigned by a combined application of several two-dimensional proton NMR methods. Analysis of the short- and medium-range NOE connectivities and of the secondary chemical shifts indicated that the peptide populates, to a significant extent, an alpha-helix conformational state, in agreement with circular dichroism measurements under similar physicochemical conditions. 15N-edited 1D spectra and 15N(omega 2)-half-filtered two-dimensional NMR experiments on the peptide in a 1:1 complex with calmodulin allowed assignment of half of the amide proton resonances and three C alpha H resonances of the bound peptide. The observed NOE connectivities between the peptide backbone protons are indicative of a stable helical secondary structure spanning at least the fragment L1-K11. The equilibrium and dynamic NMR parameters of the bound peptide are discussed in terms of a molecular interaction model

    1H, 13C and 15N resonance assignment of YajQ, a protein of unknown structure and function from Escherichia coli

    No full text
    International audienceno abstrac
    corecore