6 research outputs found

    Reinforced concrete bridge damage detection using arithmetic optimization algorithm with deep feature fusion

    Get PDF
    Inspection of Reinforced Concrete (RC) bridges is critical in order to ensure its safety and conduct essential maintenance works. Earlier defect detection is vital to maintain the stability of the concrete bridges. The current bridge maintenance protocols rely mainly upon manual visual inspection, which is subjective, unreliable and labour-intensive one. On the contrary, computer vision technique, based on deep learning methods, is regarded as the latest technique for structural damage detection due to its end-to-end training without the need for feature engineering. The classification process assists the authorities and engineers in understanding the safety level of the bridge, thus making informed decisions regarding rehabilitation or replacement, and prioritising the repair and maintenance efforts. In this background, the current study develops an RC Bridge Damage Detection using an Arithmetic Optimization Algorithm with a Deep Feature Fusion (RCBDD-AOADFF) method. The purpose of the proposed RCBDD-AOADFF technique is to identify and classify different kinds of defects in RC bridges. In the presented RCBDD-AOADFF technique, the feature fusion process is performed using the Darknet-19 and Nasnet-Mobile models. For damage classification process, the attention-based Long Short-Term Memory (ALSTM) model is used. To enhance the classification results of the ALSTM model, the AOA is applied for the hyperparameter selection process. The performance of the RCBDD-AOADFF method was validated using the RC bridge damage dataset. The extensive analysis outcomes revealed the potentials of the RCBDD-AOADFF technique on RC bridge damage detection process

    Optimization of Drone Base Station Location for the Next-Generation Internet-of-Things Using a Pre-Trained Deep Learning Algorithm and NOMA

    No full text
    Next-generation Internet-of-Things applications pose challenges for sixth-generation (6G) mobile networks, involving large bandwidth, increased network capabilities, and remarkably low latency. The possibility of using ultra-dense connectivity to address the existing problem was previously well-acknowledged. Therefore, placing base stations (BSs) is economically challenging. Drone-based stations can efficiently address Next-generation Internet-of-Things requirements while accelerating growth and expansion. Due to their versatility, they can also manage brief network development or offer on-demand connectivity in emergency scenarios. On the other hand, identifying a drone stations are a complex procedure due to the limited energy supply and rapid signal quality degradation in air-to-ground links. The proposed method uses a two-layer optimizer based on a pre-trained VGG-19 model to overcome these issues. The non-orthogonal multiple access protocol improves network performance. Initially, it uses a powerful two-layer optimizer that employs a population of micro-swarms. Next, it automatically develops a lightweight deep model with a few VGG-19 convolutional filters. Finally, non-orthogonal multiple access is used to schedule radio and power resources to devices, which improves network performance. We specifically examine how three scenarios execute when various Cuckoo Search, Grey Wolf Optimization, and Particle Swarm Optimization techniques are used. To measure the various methodologies, we also run non-parametric statistical tests, such as the Friedman and Wilcoxon tests. The proposed method also evaluates the accuracy level for network performance of DBSs using number of Devices. The proposed method achieves better performance of 98.44% compared with other methods

    Anomaly Detection in Pedestrian Walkways for Intelligent Transportation System Using Federated Learning and Harris Hawks Optimizer on Remote Sensing Images

    No full text
    Anomaly detection in pedestrian walkways is a vital research area that uses remote sensing, which helps to optimize pedestrian traffic and enhance flow to improve pedestrian safety in intelligent transportation systems (ITS). Engineers and researchers can formulate more potential techniques and tools with the power of computer vision (CV) and machine learning (ML) for mitigating potential safety hazards and identifying anomalies (i.e., vehicles) in pedestrian walkways. The real-world challenges of scenes and dynamics of environmental complexity cannot be handled by the conventional offline learning-based vehicle detection method and shallow approach. With recent advances in deep learning (DL) and ML areas, authors have found that the image detection issue ought to be devised as a two-class classification problem. Therefore, this study presents an Anomaly Detection in Pedestrian Walkways for Intelligent Transportation Systems using Federated Learning and Harris Hawks Optimizer (ADPW-FLHHO) algorithm on remote sensing images. The presented ADPW-FLHHO technique focuses on the identification and classification of anomalies, i.e., vehicles in the pedestrian walkways. To accomplish this, the ADPW-FLHHO technique uses the HybridNet model for feature vector generation. In addition, the HHO approach is implemented for the optimal hyperparameter tuning process. For anomaly detection, the ADPW-FLHHO technique uses a multi deep belief network (MDBN) model. The experimental results illustrated the promising performance of the ADPW-FLHHO technique over existing models with a maximum AUC score of 99.36%, 99.19%, and 98.90% on the University of California San Diego (UCSD) Ped1, UCSD Ped2, and avenue datasets, respectively. Therefore, the proposed model can be employed for accurate and automated anomaly detection in the ITS environment

    Hyperparameter Optimizer with Deep Learning-Based Decision-Support Systems for Histopathological Breast Cancer Diagnosis

    No full text
    Histopathological images are commonly used imaging modalities for breast cancer. As manual analysis of histopathological images is difficult, automated tools utilizing artificial intelligence (AI) and deep learning (DL) methods should be modelled. The recent advancements in DL approaches will be helpful in establishing maximal image classification performance in numerous application zones. This study develops an arithmetic optimization algorithm with deep-learning-based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier with an Adamax hyperparameter optimizer is applied for the breast cancer classification process. In order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC methodology, this comparative study states that the AOADL-HBCC technique displays better performance than other recent methodologies, with a maximum accuracy of 96.77%

    Hyperparameter Optimizer with Deep Learning-Based Decision-Support Systems for Histopathological Breast Cancer Diagnosis

    No full text
    Histopathological images are commonly used imaging modalities for breast cancer. As manual analysis of histopathological images is difficult, automated tools utilizing artificial intelligence (AI) and deep learning (DL) methods should be modelled. The recent advancements in DL approaches will be helpful in establishing maximal image classification performance in numerous application zones. This study develops an arithmetic optimization algorithm with deep-learning-based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier with an Adamax hyperparameter optimizer is applied for the breast cancer classification process. In order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC methodology, this comparative study states that the AOADL-HBCC technique displays better performance than other recent methodologies, with a maximum accuracy of 96.77%

    Henry Gas Solubility Optimization Algorithm based Feature Extraction in Dermoscopic Images Analysis of Skin Cancer

    No full text
    Artificial Intelligence (AI) techniques have changed the general perceptions about medical diagnostics, especially after the introduction and development of Convolutional Neural Networks (CNN) and advanced Deep Learning (DL) and Machine Learning (ML) approaches. In general, dermatologists visually inspect the images and assess the morphological variables such as borders, colors, and shapes to diagnose the disease. In this background, AI techniques make use of algorithms and computer systems to mimic the cognitive functions of the human brain and assist clinicians and researchers. In recent years, AI has been applied extensively in the domain of dermatology, especially for the detection and classification of skin cancer and other general skin diseases. In this research article, the authors propose an Optimal Multi-Attention Fusion Convolutional Neural Network-based Skin Cancer Diagnosis (MAFCNN-SCD) technique for the detection of skin cancer in dermoscopic images. The primary aim of the proposed MAFCNN-SCD technique is to classify skin cancer on dermoscopic images. In the presented MAFCNN-SCD technique, the data pre-processing is performed at the initial stage. Next, the MAFNet method is applied as a feature extractor with Henry Gas Solubility Optimization (HGSO) algorithm as a hyperparameter optimizer. Finally, the Deep Belief Network (DBN) method is exploited for the detection and classification of skin cancer. A sequence of simulations was conducted to establish the superior performance of the proposed MAFCNN-SCD approach. The comprehensive comparative analysis outcomes confirmed the supreme performance of the proposed MAFCNN-SCD technique over other methodologies
    corecore