76 research outputs found

    Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence

    Get PDF
    A B S T R A C T Angiotensin II type 1 receptor antagonists [ARBs (angiotensin receptor blockers)] are indicated for BP (blood pressure)-lowering, renal protection and cardioprotection in patients unable to tolerate ACEIs (angiotensin-converting enzyme inhibitors). A recent meta-analysis revealed an association between ARBs and tumour development, possibly due to enhancement of angiogenesis. However, published evidence is conflicting on the effects of ARBs on angiogenesis or the expansion of the existing vascular network. ARBs have been shown to exert primarily anti-angiogenic effects in basic science studies of cancer, retinopathy, peripheral artery disease and some models of cardiovascular disease. In animal and cellular models of myocardial infarction and stroke, however, ARB administration has been associated with robust increases in vascular density and improved recovery. The aim of the present review is to examine the angiogenic effects of ARBs in animal and cellular models of relevant disease states, including proposed molecular mechanisms of action of ARBs and the clinical consequences of ARB use

    Diabetic Ketoacidosis Management: Updates and Challenges for Specific Patient Population

    No full text
    Diabetic ketoacidosis (DKA) is the most common hyperglycemic emergency and causes the greatest risk for death that could be prevented in patients with diabetes mellitus. DKA occurs more commonly among patients with type-1 diabetes with a thirty percent of the cases take place in patients with type 2 diabetes. DKA is characterized by sever hyperglycemia, metabolic acidosis and ketosis. Proper management of DKA requires hospitalization for aggressive replacement and monitoring of fluids, electrolytes and insulin therapy. Management of DKA has been updated with guidelines, to help standardize care, and reduce mortality and morbidity. The major precipitating factors for DKA include new diagnosis of diabetes, non-adherence to insulin therapy as well as infection in patients with diabetes. Discharge plans should include appropriate selection of insulin dosing and regimens as well as patient education to prevent recurrence of DKA. Further, definition and management of euglycemic DKA in patients prescribed sodium-glucose co-transporter 2 inhibitors are discussed. Special consideration is reviewed for specific patient population including pregnancy, renal replacement, acute pancreatitis, and insulin pump users as well as patients with COVID-19

    High Glucose-Mediated Tyrosine Nitration of PI3-Kinase: A Molecular Switch of Survival and Apoptosis in Endothelial Cells

    No full text
    Diabetes and hyperglycemia are associated with increased retinal oxidative and nitrative stress and vascular cell death. Paradoxically, high glucose stimulates expression of survival and angiogenic growth factors. Therefore, we examined the hypothesis that high glucose-mediated tyrosine nitration causes inhibition of the survival protein PI3-kinase, and in particular, its regulatory p85 subunit in retinal endothelial cell (EC) cultures. Retinal EC were cultured in high glucose (HG, 25 mM) for 3 days or peroxynitrite (PN, 100 µM) overnight in the presence or absence of a peroxynitrite decomposition catalyst (FeTPPs, 2.5 µM), or the selective nitration inhibitor epicatechin (100 µM). Apoptosis of ECs was assessed using TUNEL assay and caspase-3 activity. Immunoprecipitation and Western blot were used to assess protein expression and tyrosine nitration of p85 subunit and its interaction with the p110 subunit. HG or PN accelerated apoptosis of retinal ECs compared to normal glucose (NG, 5 mM) controls. HG- or PN-treated cells also showed significant increases in tyrosine nitration on the p85 subunit of PI3-kinase that inhibited its association with the catalytic p110 subunit and impaired PI3-kinase/Akt kinase activity. Decomposing peroxynitrite or blocking tyrosine nitration of p85 restored the activity of PI3-kinase, and prevented apoptosis and activation of p38 MAPK. Inhibiting p38 MAPK or overexpression of the constitutively activated Myr-Akt construct prevented HG- or peroxynitrite-mediated apoptosis. In conclusion, HG impairs pro-survival signals and causes accelerated EC apoptosis, at least in part via tyrosine nitration and inhibition of PI3-kinase. Inhibitors of nitration can be used in adjuvant therapy to delay diabetic retinopathy and microvascular complication

    Vascular protective effects of Angiotensin Receptor Blockers: Beyond Blood pressure

    Get PDF
    AT1R blockers (ARBs) represent a major class of antihypertensive medications. They are considered first line treatment for essential hypertension. Moreover, ARBs are the cornerstone treatment for other cardiovascular diseases especially in patients with diabetic and renal comorbidities. Clinical and experimental evidence have documented the beneficial actions of ARBs beyond the blood pressure lowering effect. Ischemic diseases such as stroke and proliferative retinopathy are characterized by hypoxia-driven release of angiogenic growth factors [2]. However, revascularization of the ischemic areas is inadequate, resulting in impaired neuro-vascular function. ARBs have been shown to exhibit vascular protective and pro- or anti-angiogenic effects depending on the tissue/cell type and disease condition under study [3]. Our group has demonstrated the vascular protective effects of ARBs and candesartan, in particular, in models of ischemic stroke and retinopathy. The positive impact of candesartan was mainly via enhancing the proangiogenic state and stimulation of reparative angiogenesis.  This commentary aims to highlight the recently identified pathways that took place as result of directly blocking AT1 receptor or indirectly by possible activation of AT2 receptor in the context of the published literature

    Silencing p75NTR prevents proNGF-induced endothelial cell death and development of acellular capillaries in rat retina

    No full text
    Accumulation of the nerve growth factor precursor (proNGF) and its receptor p75NTR have been associated with several neurodegenerative diseases in both brain and retina. However, whether proNGF contributes to microvascular degeneration remain unexplored. This study seeks to investigate the mechanism by which proNGF/p75NTR induce endothelial cell (EC) death and development of acellular capillaries, a surrogate marker of retinal ischemia. Stable overexpression of the cleavage-resistant proNGF and molecular silencing of p75NTR were utilized in human retinal EC and rat retinas in vivo. Stable overexpression of proNGF decreased NGF levels and induced retinal vascular cell death evident by 1.9-fold increase in acellular capillaries and activation of JNK and cleaved-PARP that were mitigated by p75NTRshRNA. In vitro, overexpression of proNGF did not alter TNF-α level, reduced NGF, however induced EC apoptosis evident by activation of JNK and p38 MAPK, cleaved-PARP. Silencing p75NTR using siRNA restored expression of NGF and TrkA activation and prevented EC apoptosis. Treatment of EC with human-mutant proNGF induced apoptosis that coincided with marked protein interaction and nuclear translocation of p75NTR and the neurotrophin receptor interacting factor. These effects were abolished by a selective p75NTR antagonist. Therefore, targeting p75NTR represents a potential therapeutic strategy for diseases associated with aberrant expression of proNGF

    Modulating Expression of Thioredoxin Interacting Protein (TXNIP) Prevents Secondary Damage and Preserves Visual Function in a Mouse Model of Ischemia/Reperfusion

    No full text
    Retinal neurodegeneration, an early characteristic of several blinding diseases, triggers glial activation, resulting in inflammation, secondary damage and visual impairment. Treatments that aim only at neuroprotection have failed clinically. Here, we examine the impact of modulating thioredoxin interacting protein (TXNIP) to the inflammatory secondary damage and visual impairment in a model of ischemia/reperfusion (IR). Wild type (WT) and TXNIP knockout (TKO) mice underwent IR injury by increasing intraocular pressure for 40 min, followed by reperfusion. An additional group of WT mice received intravitreal TXNIP-antisense oligomers (ASO, 100 µg/2 µL) 2 days post IR injury. Activation of Müller glial cells, apoptosis and expression of inflammasome markers and visual function were assessed. IR injury triggered early TXNIP mRNA expression that persisted for 14 days and was localized within activated Müller cells in WT-IR, compared to sham controls. Exposure of Müller cells to hypoxia-reoxygenation injury triggered endoplasmic reticulum (ER) stress markers and inflammasome activation in WT cells, but not from TKO cells. Secondary damage was evident by the significant increase in the number of occluded acellular capillaries and visual impairment in IR-WT mice but not in IR-TKO. Intervention with TXNIP-ASO prevented ischemia-induced glial activation and neuro-vascular degeneration, and improved visual function compared to untreated WT. Targeting TXNIP expression may offer an effective approach in the prevention of secondary damage associated with retinal neurodegenerative diseases

    Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases

    No full text
    Mesenchymal stem cells are multipotent stem cells isolated from various tissue sources, including but not limited to bone marrow, adipose, umbilical cord, and Wharton Jelly. Although cell-mediated mechanisms have been reported, the therapeutic effect of MSCs is now recognized to be primarily mediated via paracrine effects through the secretion of bioactive molecules, known as the “secretome”. The regenerative benefit of the secretome has been attributed to trophic factors and cytokines that play neuroprotective, anti-angiogenic/pro-angiogenic, anti-inflammatory, and immune-modulatory roles. The advancement of autologous MSCs therapy can be hindered when introduced back into a hostile/disease environment. Barriers include impaired endogenous MSCs function, limited post-transplantation cell viability, and altered immune-modulatory efficiency. Although secretome-based therapeutics have gained popularity, many translational hurdles, including the heterogeneity of MSCs, limited proliferation potential, and the complex nature of the secretome, have impeded the progress. This review will discuss the experimental and clinical impact of restoring the functional capabilities of MSCs prior to transplantation and the progress in secretome therapies involving extracellular vesicles. Modulation and utilization of MSCs–secretome are most likely to serve as an effective strategy for promoting their ultimate success as therapeutic modulators
    • …
    corecore