4 research outputs found

    Circulating tumor DNA as a biomarker for monitoring early treatment responses of patients with advanced lung adenocarcinoma receiving immune checkpoint inhibitors

    Get PDF
    Immunotherapy for metastasized non-small-cell lung cancer (NSCLC) can show long-lasting clinical responses. Selection of patients based on programmed death-ligand 1 (PD-L1) expression shows limited predictive value for durable clinical benefit (DCB). We investigated whether early treatment effects as measured by a change in circulating tumor DNA (ctDNA) level is a proxy of early tumor response to immunotherapy according to response evaluation criteria in solid tumors v1.1 criteria, progression-free survival (PFS), DCB, and overall survival (OS). To this aim, blood tubes were collected from advanced-stage lung adenocarcinoma patients (n = 100) receiving immune checkpoint inhibitors (ICI) at baseline (t(0)) and prior to first treatment evaluation (4-6 weeks; t(1)). Nontargetable (driver) mutations detected in the pretreatment tumor biopsy were used to quantify tumor-specific ctDNA levels using droplet digital PCR. We found that changes in ctDNA levels were strongly associated with tumor response. A > 30% decrease in ctDNA at t(1) correlated with a longer PFS and OS. In total, 80% of patients with a DCB of >= 26 weeks displayed a > 30% decrease in ctDNA levels. For patients with a PD-L1 tumor proportion score of >= 1%, decreasing ctDNA levels were associated with a higher frequency a DCB (80%) and a prolonged median PFS (85 weeks) and OS (101 weeks) compared with patients with no decrease in ctDNA (34%; 11 and 39 weeks, respectively). This study shows that monitoring of ctDNA dynamics is an easy-to-use and promising tool for assessing PFS, DCB, and OS for ICI-treated NSCLC patients

    Technical Evaluation of Commercial Mutation Analysis Platforms and Reference Materials for Liquid Biopsy Profiling

    Get PDF
    Molecular profiling from liquid biopsy, in particular cell-free DNA (cfDNA), represents an attractive alternative to tissue biopsies for the detection of actionable targets and tumor monitoring. In addition to PCR-based assays, Next Generation Sequencing (NGS)-based cfDNA assays are now commercially available and are being increasingly adopted in clinical practice. However, the validity of these products as well as the clinical utility of cfDNA in the management of patients with cancer has yet to be proven. Within framework of the Innovative Medicines Initiative (IMI) program CANCER-ID we evaluated the use of commercially available reference materials designed for ctDNA testing and cfDNA derived from Diagnostic Leukaphereses (DLA) for inter-and intra-assay as well as intra-and inter-laboratory comparisons. In three experimental setups, a broad range of assays including ddPCR, MassARRAY and various NGS-based assays were tested. We demonstrate that both reference materials with predetermined VAFs and DLA samples are extremely useful for the performance assessment of mutation analysis platforms. Moreover, our data indicate a substantial variability of NGS assays with respect to sensitivity and specificity
    corecore