3 research outputs found

    Клинико-гСнСтичСскиС аспСкты ΠΌΠ΅Π½ΠΎΠΏΠ°ΡƒΠ·Π°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ - соврСмСнная ΠΏΠ°Ρ€Π°Π΄ΠΈΠ³ΠΌΠ°. Π§Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΠ»Π° пандСмия COVID-19?

    No full text
    In the modern paradigm of public health protection, much attention is paid to the health of women in peri- and postmenopause, and a personalized approach prevails. It is generally recognized that the pathogenetic therapy of menopausal disorders is hormone therapy. But the COVID-19 pandemic has made its own adjustments to the routine strategy of choosing menopausal hormone therapy (MHT). The purpose of this review was to analyze studies on the dependence of the effectiveness of MHT on clinical and genetic aspects in the context of the ongoing COVID-19 pandemic. The review highlights the main risks of MHT for thromboembolic diseases and coagulation complications characteristic of COVID-19, discusses genetic predispositions that aggravate the course of the post-COVID period, as well as the effectiveness of estrogens in protecting the vascular endothelium and increasing the number of CD4+ T cells, providing an adequate immune response when infected with SARS-CoV-2. Numerous studies show that the complications characteristic of the severe course of COVID-19 are multifactorial in nature and cannot be unambiguously explained only by genetic predisposition. However, with the development of personalized medicine, special attention should be paid to the study of genetic aspects that can equally contribute to the occurrence of menopausal disorders in healthy women and aggravate the course of the post-pregnancy period. The data presented allow us to conclude that in the context of the ongoing COVID-19 pandemic at the population level, MHT can bring significant benefits to women during menopause due to the beneficial effect of estrogens on vascular walls. Additional study of the relationship between the course of the postcovid period in MHT users and polymorphisms of candidate genes that determine the risks of thrombotic complications and metabolic consequences is required.Π’ соврСмСнной ΠΏΠ°Ρ€Π°Π΄ΠΈΠ³ΠΌΠ΅ ΠΎΡ…Ρ€Π°Π½Ρ‹ Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ насСлСния Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡŽ ΠΆΠ΅Π½Ρ‰ΠΈΠ½ Π² ΠΏΠ΅Ρ€ΠΈ- ΠΈ постмСнопаузС удСляСтся большоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ господствуСт пСрсонифицированный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄. ΠžΠ±Ρ‰Π΅ΠΏΡ€ΠΈΠ·Π½Π°Π½Π½ΠΎ, Ρ‡Ρ‚ΠΎ патогСнСтичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ ΠΌΠ΅Π½ΠΎΠΏΠ°ΡƒΠ·Π°Π»ΡŒΠ½Ρ‹Ρ… расстройств являСтся Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ тСрапия. Но пандСмия COVID-19 внСсла свои ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΠ²Ρ‹ Π² Ρ€ΡƒΡ‚ΠΈΠ½Π½ΡƒΡŽ ΡΡ‚Ρ€Π°Ρ‚Π΅Π³ΠΈΡŽ Π²Ρ‹Π±ΠΎΡ€Π° ΠΌΠ΅Π½ΠΎΠΏΠ°ΡƒΠ·Π°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (ΠœΠ“Π’). ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π° являлся Π°Π½Π°Π»ΠΈΠ· исслСдований зависимости эффСктивности ΠœΠ“Π’ ΠΎΡ‚ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-гСнСтичСских аспСктов Π² условиях ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‰Π΅ΠΉΡΡ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ COVID-19. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ΡΡ основныС риски ΠœΠ“Π’ тромбоэмболичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ коагуляционных ослоТнСний, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для COVID-19, ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ гСнСтичСскиС прСдрасполоТСнности, ΠΎΡ‚ΡΠ³Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ постковидного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ эстрогСныов, Π·Π°Ρ‰ΠΈΡ‰Π°ΡŽΡ‰ΠΈΡ… эндотСлий сосудов ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… количСство CD4+ T-ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, обСспСчивая Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹ΠΉ ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΏΡ€ΠΈ ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ SARS-CoV-2. ΠœΠ½ΠΎΠ³ΠΎΡ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ослоТнСния, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ для тяТСлого тСчСния COVID-19, носят ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ ΠΎΠ±ΡŠΡΡΠ½Π΅Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ гСнСтичСской ΠΏΡ€Π΅Π΄Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ. Однако, с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ пСрсонализированной ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹, особого внимания заслуТиваСт исслСдованиС гСнСтичСских аспСктов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π² Ρ€Π°Π²Π½ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ возникновСнию ΠΌΠ΅Π½ΠΎΠΏΠ°ΡƒΠ·Π°Π»ΡŒΠ½Ρ‹Ρ… расстройств Ρƒ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… ΠΆΠ΅Π½Ρ‰ΠΈΠ½ ΠΈ ΠΎΡ‚ΡΠ³ΠΎΡ‰Π°Ρ‚ΡŒ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ постковидного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π² условиях ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‰Π΅ΠΉΡΡ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ COVID-19 Π½Π° популяционном ΡƒΡ€ΠΎΠ²Π½Π΅ ΠœΠ“Π’ ΠΌΠΎΠΆΠ΅Ρ‚ принСсти ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Π²Ρ‹Π³ΠΎΠ΄Ρƒ ΠΆΠ΅Π½Ρ‰ΠΈΠ½Π°ΠΌ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ климактСрия Π·Π° счСт благоприятного влияния эстрогСнов Π½Π° стСнки сосудов. ВрСбуСтся Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ взаимосвязи тСчСния постковидного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Ρƒ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΈΡ† ΠœΠ“Π’ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠΎΠ² Π³Π΅Π½ΠΎΠ²-ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ΠΎΠ², ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… риски тромботичСских ослоТнСний ΠΈ мСтаболичСских послСдствий

    Association of the DNA Methyltransferase and Folate Cycle Enzymes’ Gene Polymorphisms with Coronary Restenosis

    No full text
    Background: In recent years, the interest in genetic predisposition studies for coronary artery disease and restenosis has increased. Studies show that polymorphisms of genes encoding folate cycle and homocysteine metabolism enzymes significantly contribute to atherogenesis and endothelial dysfunction. The purpose of this study was to examine some SNPs of genes coding for folate cycle enzymes and DNA methyltransferases as risk factors for in-stent restenosis. Methods: The study included 113 patients after stent implantation and 62 patients without signs of coronary artery disease at coronary angiography as the control group. Real-time PCR and RFLP-PCR were applied to genotype all participants for MTHFR rs1801133, MTHFR rs1801131, MTR rs1805087, MTRR rs1801394, DNMT1 rs8101626, DNMT3B rs1569686, and DNMT3B rs2424913 gene polymorphisms. Statistical data processing was carried out using the R language and the SPSS Statistics 20 software. Results: Statistically significant differences in the DNMT3B gene polymorphisms were found between patients with and without in-stent restenosis. An association of TT rs1569686 and TT rs2424913 genotypes with the development of restenosis was revealed. The TT rs1569686 genotype was more frequent in the patients under the age of 65 years and in the subgroup of patients with post-12-month restenosis, as was the minor GG genotype for MTR rs1805087. The homozygous TT genotype for MTHFR rs1801133 was significantly more frequent in the subgroup over 65 years old. The frequencies of the heterozygous genotype for the MTRR gene and the minor GG homozygotes for the DNMT1 gene were significantly higher in the subgroup with in-stent restenosis under 65 years old. Conclusions: The results of this study could be used for a comprehensive risk assessment of ISR development, determining the optimal tactics and an individual approach in the treatment of patients with coronary artery disease before or after percutaneous coronary interventions, including homocysteine-lowering treatment in patients with hyperhomocysteinemia and a high risk of in-stent restenosis

    Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production

    No full text
    Artificial light is characterized by certain features of its impact on the body in terms of its spectral distribution of power, duration of exposure and intensity. Short waves, perceived as blue light, are the strongest synchronizing agent for the circadian system. In the present work, we investigated the features of the circadian rhythms of blood pressure (BP), heart rate (HR), the excretion of electrolytes and the secretion of melatonin in normotensive (Wistar–Kyoto) and hypertensive (SHR) rats under the action of monochromatic blue light in the daytime period. It was found that the exposure of Wistar–Kyoto rats to monochromatic blue light was accompanied by a significant decrease in nighttime and 24 h systolic BP. The most remarkable changes are characteristic of the HR in SHR rats under monochromatic light. A significant decrease in HR in each time period was found, but the predominance of nighttime over daytime values remained in SHR animals. There was also a significant increase in the mesor of the HR in SHR rats. Additionally, the amplitude of diastolic BP and HR, as well as the range of oscillations in HR, were significantly increased compared with the standard light pattern. In contrast to SHR rats, the regulation of the circadian rhythms in Wistar–Kyoto rats was more flexible and presented more changes, which may be aimed at the adaptation of the body to environmental conditions. For Wistar–Kyoto rats, an increase in the level of excreted electrolytes was observed under the action of monochromatic light, but no similar changes were found in SHR rats. For Wistar–Kyoto rats, a significant decrease in the urine concentration of aMT6s in the daytime and nighttime periods is characteristic, which results in the loss of the circadian rhythm. In SHR rats, there was a significant decrease in the nighttime content of aMT6s in the urine, while the daytime concentration, on the contrary, increased. The obtained data demonstrate that prolonged exposure to monochromatic blue light in the daytime period affects the circadian structure of the rhythms of the cardiovascular system, the rhythm of electrolyte excretion and the production of epiphyseal melatonin in wild-type and hypertensive animals. In SHR rats, the rhythms of BP and HR exhibit a more rigid pattern
    corecore