25 research outputs found
Etude du rÎle des sidérophores microbiens dans la modulation des défenses de la plante Arabidopsis thaliana
Iron is an essential element for almost all living organisms, however, it is not bioavailable and is toxic in its free form as it generates reactive oxygen species via the Fenton reaction. To obtain iron, microorganisms secrete small molecules named siderophores with very high affinity for Fe3 +. Siderophores are required for the pathogenesis of several pathogens on animals or plants, but they also are elicitors of defenses. Previous work has shown that siderophores activate defenses and iron deficiency response genes in Arabidopsis thaliana. The activation of defense responses by the siderophore requires a physiological level of iron in the plant indicating that iron is involved in the activation of this process. In my thesis, the global response of the plant A. thaliana to the siderophore deferrioxamine (DFO) has been studied by a transcriptomic approach. The results obtained show that the main process being activated is immunity. By using different iron chelating agents, I have shown that the iron chelation effect is responsible for the activation of immunity. The siderophore treatment also causes disturbance in the homeostasis of iron and other metals in the plant. In an irt1 mutant affected in the transport of heavy metals including iron, activation of defenses by the DFO is compromised. In addition, I studied the effect of iron status of the plant on its susceptibility to the pathogenic bacteria Dickeya dadantii and on the expression of defenses. It appears that iron is required for the establishment of several defense processes in response to D. dadantii. The iron deficient plants are more resistant to infection. A physiological amount of iron in the plant is required for bacterial growth and for expression of the virulence factors, pectate lyases. Iron staining by the Perls' -DAB - H2O2 method shows that low abundance of this metal in plant tissue coincides with the presence of bacteria, which contain high amounts of iron. Overall, our results show that iron is required in the defense arsenal of the plant but it is also a limiting factor for the infectious cycle of D. dadantii.Le fer est un Ă©lĂ©ment essentiel pour presque tous les ĂȘtres vivants cependant, il est peu biodisponible et est toxique dans sa forme libre car il engendre des formes rĂ©actives de l'oxygĂšne via la rĂ©action de Fenton. Pour se procurer le fer, les microorganismes sĂ©crĂštent de petites molĂ©cules nommĂ©es sidĂ©rophores ayant une trĂšs forte affinitĂ© pour Fe3+. Les sidĂ©rophores sont requis pour la pathogĂ©nie de plusieurs agents pathogĂšnes sur hĂŽtes animaux ou vĂ©gĂ©taux, mais ce sont Ă©galement des Ă©liciteurs de dĂ©fense. Des travaux antĂ©rieurs ont montrĂ© que les sidĂ©rophores activent les dĂ©fenses et les gĂšnes de rĂ©ponse Ă la carence en fer chez Arabidopsis thaliana. Lâactivation de rĂ©ponses de dĂ©fense par le sidĂ©rophore requiert un niveau physiologique de fer dans la plante indiquant que le fer participe Ă la mise en place de ce processus. Au cours de ma thĂšse, les rĂ©ponses globales de la plante A. thaliana au sidĂ©rophore deferrioxamine (DFO) ont Ă©tĂ© Ă©tudiĂ©es par une approche transcriptome. Les rĂ©sultats obtenus montrent que le principal processus activĂ© est lâimmunitĂ©. En utilisant des chĂ©lateurs de fer diffĂ©rents, jâai montrĂ© que lâeffet chĂ©lation du fer est responsable de lâactivation de lâimmunitĂ©. Le traitement sidĂ©rophore provoque Ă©galement une perturbation de lâhomĂ©ostasie du fer et dâautres mĂ©taux dans la plante. Dans un mutant irt1 affectĂ© dans le transport de plusieurs mĂ©taux lourds dont le fer, lâactivation des dĂ©fenses par la DFO est compromise. Par ailleurs, jâai Ă©tudiĂ© lâeffet du statut en fer de la plante sur sa sensibilitĂ© Ă la bactĂ©rie pathogĂšne Dickeya dadantii et sur lâexpression des dĂ©fenses. Il apparait que le fer est requis pour la mise en place de plusieurs processus de dĂ©fense en rĂ©ponse Ă D. dadantii. Les plantes carencĂ©es en fer sont plus rĂ©sistantes Ă lâinfection. Une quantitĂ© de fer physiologique dans la plante est requise pour la multiplication bactĂ©rienne et pour lâexpression des facteurs de pathogĂ©nie, les pectate lyases. Le marquage du fer par la mĂ©thode Perlsâ-DAB-H2O2 montre que celuiâci est trĂšs peu abondant dans les tissues vĂ©gĂ©taux contenant les bactĂ©ries qui, elles, sont chargĂ©es de fer. Dans lâensemble, nos rĂ©sultats montrent que le fer est requis dans lâarsenal dĂ©fensif de la plante mais quâil est Ă©galement un facteur limitant pour le cycle infectieux de D. dadantii
Study of the role of microbial siderophores in modulating immunity from the plant Arabidopsis thaliana
Le fer est un Ă©lĂ©ment essentiel pour presque tous les ĂȘtres vivants cependant, il est peu biodisponible et est toxique dans sa forme libre car il engendre des formes rĂ©actives de l'oxygĂšne via la rĂ©action de Fenton. Pour se procurer le fer, les microorganismes sĂ©crĂštent de petites molĂ©cules nommĂ©es sidĂ©rophores ayant une trĂšs forte affinitĂ© pour Fe3+. Les sidĂ©rophores sont requis pour la pathogĂ©nie de plusieurs agents pathogĂšnes sur hĂŽtes animaux ou vĂ©gĂ©taux, mais ce sont Ă©galement des Ă©liciteurs de dĂ©fense. Des travaux antĂ©rieurs ont montrĂ© que les sidĂ©rophores activent les dĂ©fenses et les gĂšnes de rĂ©ponse Ă la carence en fer chez Arabidopsis thaliana. Lâactivation de rĂ©ponses de dĂ©fense par le sidĂ©rophore requiert un niveau physiologique de fer dans la plante indiquant que le fer participe Ă la mise en place de ce processus. Au cours de ma thĂšse, les rĂ©ponses globales de la plante A. thaliana au sidĂ©rophore deferrioxamine (DFO) ont Ă©tĂ© Ă©tudiĂ©es par une approche transcriptome. Les rĂ©sultats obtenus montrent que le principal processus activĂ© est lâimmunitĂ©. En utilisant des chĂ©lateurs de fer diffĂ©rents, jâai montrĂ© que lâeffet chĂ©lation du fer est responsable de lâactivation de lâimmunitĂ©. Le traitement sidĂ©rophore provoque Ă©galement une perturbation de lâhomĂ©ostasie du fer et dâautres mĂ©taux dans la plante. Dans un mutant irt1 affectĂ© dans le transport de plusieurs mĂ©taux lourds dont le fer, lâactivation des dĂ©fenses par la DFO est compromise. Par ailleurs, jâai Ă©tudiĂ© lâeffet du statut en fer de la plante sur sa sensibilitĂ© Ă la bactĂ©rie pathogĂšne Dickeya dadantii et sur lâexpression des dĂ©fenses. Il apparait que le fer est requis pour la mise en place de plusieurs processus de dĂ©fense en rĂ©ponse Ă D. dadantii. Les plantes carencĂ©es en fer sont plus rĂ©sistantes Ă lâinfection. Une quantitĂ© de fer physiologique dans la plante est requise pour la multiplication bactĂ©rienne et pour lâexpression des facteurs de pathogĂ©nie, les pectate lyases. Le marquage du fer par la mĂ©thode Perlsâ-DAB-H2O2 montre que celuiâci est trĂšs peu abondant dans les tissues vĂ©gĂ©taux contenant les bactĂ©ries qui, elles, sont chargĂ©es de fer. Dans lâensemble, nos rĂ©sultats montrent que le fer est requis dans lâarsenal dĂ©fensif de la plante mais quâil est Ă©galement un facteur limitant pour le cycle infectieux de D. dadantii.Iron is an essential element for almost all living organisms, however, it is not bioavailable and is toxic in its free form as it generates reactive oxygen species via the Fenton reaction. To obtain iron, microorganisms secrete small molecules named siderophores with very high affinity for Fe3 +. Siderophores are required for the pathogenesis of several pathogens on animals or plants, but they also are elicitors of defenses. Previous work has shown that siderophores activate defenses and iron deficiency response genes in Arabidopsis thaliana. The activation of defense responses by the siderophore requires a physiological level of iron in the plant indicating that iron is involved in the activation of this process. In my thesis, the global response of the plant A. thaliana to the siderophore deferrioxamine (DFO) has been studied by a transcriptomic approach. The results obtained show that the main process being activated is immunity. By using different iron chelating agents, I have shown that the iron chelation effect is responsible for the activation of immunity. The siderophore treatment also causes disturbance in the homeostasis of iron and other metals in the plant. In an irt1 mutant affected in the transport of heavy metals including iron, activation of defenses by the DFO is compromised. In addition, I studied the effect of iron status of the plant on its susceptibility to the pathogenic bacteria Dickeya dadantii and on the expression of defenses. It appears that iron is required for the establishment of several defense processes in response to D. dadantii. The iron deficient plants are more resistant to infection. A physiological amount of iron in the plant is required for bacterial growth and for expression of the virulence factors, pectate lyases. Iron staining by the Perls' -DAB - H2O2 method shows that low abundance of this metal in plant tissue coincides with the presence of bacteria, which contain high amounts of iron. Overall, our results show that iron is required in the defense arsenal of the plant but it is also a limiting factor for the infectious cycle of D. dadantii
Immunity to plant pathogens and iron homeostasis
International audienceIron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity
The Nucleus-Encoded trans-Acting Factor MCA1 Plays a Critical Role in the Regulation of Cytochrome f Synthesis in Chlamydomonas Chloroplasts[W]
This work shows that MCA1, required for the expression of cytochrome f, is degraded by proteolysis upon interaction with unassembled cytochrome f. MCA1 proteolysis appears to be critical for the assembly-dependent regulation of cytochrome f synthesis, known as Control by Epistasy of Synthesis, which tightly couples its expression to that of its assembly partners
Recommended from our members
Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass.
BackgroundSecond-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production.ResultsWe have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase and the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells.ConclusionThe results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants
Bulletin de la Société pour la protection des paysages de France
novembre 19111911/11 (N48,A10)-1911/11