2 research outputs found
Prediction error and accuracy of intraocular lens power calculation in pediatric patient comparing SRK II and Pediatric IOL Calculator
<p>Abstract</p> <p>Background</p> <p>Despite growing number of intraocular lens power calculation formulas, there is no evidence that these formulas have good predictive accuracy in pediatric, whose eyes are still undergoing rapid growth and refractive changes. This study is intended to compare the prediction error and the accuracy of predictability of intraocular lens power calculation in pediatric patients at 3 month post cataract surgery with primary implantation of an intraocular lens using SRK II versus Pediatric IOL Calculator for pediatric intraocular lens calculation. Pediatric IOL Calculator is a modification of SRK II using Holladay algorithm. This program attempts to predict the refraction of a pseudophakic child as he grows, using a Holladay algorithm model. This model is based on refraction measurements of pediatric aphakic eyes. Pediatric IOL Calculator uses computer software for intraocular lens calculation.</p> <p>Methods</p> <p>This comparative study consists of 31 eyes (24 patients) that successfully underwent cataract surgery and intraocular lens implantations. All patients were 12 years old and below (range: 4 months to 12 years old). Patients were randomized into 2 groups; SRK II group and Pediatric IOL Calculator group using envelope technique sampling procedure. Intraocular lens power calculations were made using either SRK II or Pediatric IOL Calculator for pediatric intraocular lens calculation based on the printed technique selected for every patient. Thirteen patients were assigned for SRK II group and another 11 patients for Pediatric IOL Calculator group. For SRK II group, the predicted postoperative refraction is based on the patient's axial length and is aimed for emmetropic at the time of surgery. However for Pediatric IOL Calculator group, the predicted postoperative refraction is aimed for emmetropic spherical equivalent at age 2 years old. The postoperative refractive outcome was taken as the spherical equivalent of the refraction at 3 month postoperative follow-up. The data were analysed to compare the mean prediction error and the accuracy of predictability of intraocular lens power calculation between SRK II and Pediatric IOL Calculator.</p> <p>Results</p> <p>There were 16 eyes in SRK II group and 15 eyes in Pediatric IOL Calculator group. The mean prediction error in the SRK II group was 1.03 D (SD, 0.69 D) while in Pediatric IOL Calculator group was 1.14 D (SD, 1.19 D). The SRK II group showed lower prediction error of 0.11 D compared to Pediatric IOL Calculator group, but this was not statistically significant (p = 0.74). There were 3 eyes (18.75%) in SRK II group achieved acccurate predictability where the refraction postoperatively was within ± 0.5 D from predicted refraction compared to 7 eyes (46.67%) in the Pediatric IOL Calculator group. However the difference of the accuracy of predictability of postoperative refraction between the two formulas was also not statistically significant (p = 0.097).</p> <p>Conclusions</p> <p>The prediction error and the accuracy of predictability of postoperative refraction in pediatric cataract surgery are comparable between SRK II and Pediatric IOL Calculator. The existence of the Pediatric IOL Calculator provides an alternative to the ophthalmologist for intraocular lens calculation in pediatric patients. Relatively small sample size and unequal distribution of patients especially the younger children (less than 3 years) with a short time follow-up (3 months), considering spherical equivalent only.</p
A preliminary study to compare the prediction error of postoperative refraction in paediatric cataract surgery between 2 different intraocular lens power calculation formulas
The treatment of paediatric cataracts has progressed tremendously in the
past 15 to 20 years. There is a growing trend towards intraocular lens implantation in
infants and younger children whose eyes are still undergoing rapid growth and refractive
changes.
Objective This study is intended to assess the predictability of desired refractive
outcomes at 3 month postoperative period in paediatric patients undergoing cataract
surgery with primary placement of an intraocular lens.
Methodology : This randomized interventional study of 31 eyes (24 patients) that
successfully underwent cataract surgery and intraocular lens implantations. All patients
were 12 years old and below. Intraocular lens power calculations were made using either
SRK II or Modified Formula For Paediatric IOL Calculation. The postoperative refractive
outcome was taken as the spherical equivalent of the refraction at 3 month postoperative
follow-up. The prediction error was taken as the absolute difference between the predicted
and the actual refraction. The data were analysed to compare the mean prediction error
between SRK II and Modified Formula and evaluate the predictability.
Results : The mean prediction error in the SRK II group was 1.03 (0.69) D while
in Modified Formula 1.14 (1.19) D. The SRK II group showed lower prediction error of
0.11 D compared to Modified Formula group, but this was not statistically significant
XIV
(p > 0.05). 18.75% eyes in SRK II group achieved good predictability i.e. the refraction
postoperatively was within± 0.5 D from predicted refraction compared to 46.67% eyes in
the Modified Formula group. However the difference of the predictability between the two
fonnulas was also not statistically significant.
Conclusion We would like to conclude that the predictability of postoperative
refraction in paediatric cataract surgery is comparable between Modified Formula and
SRK II fonnula. The existence of the Modified Fonnula provides an alternative to the
ophthalmologist for intraocular lens calculation in paediatric patients