4 research outputs found

    Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities

    Get PDF
    Heavy metals are the metal compounds found in earth’s crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs

    Determination of Metabolomics Profiling in BPA-Induced Impaired Metabolism

    No full text
    Exposure to bisphenol A (BPA) is unavoidable and it has far-reaching negative effects on living systems. This study aimed to explore the toxic effects of BPA in an experimental animal model through a metabolomics approach that is useful in measuring small molecule perturbations. Beside this, we also examined the ameliorative effects of resveratrol (RSV) against BPA-induced disturbances in experimental mice. This study was conducted for 28 days, and the results showed that BPA indeed induced an impairment in amino acid metabolism, taking place in the mitochondria by significantly (p < 0.05) decreasing the levels of certain amino acids, i.e., taurine, threonine, asparagine, leucine, norleucine, and glutamic acid in the mice plasma. However, the administration of RSV did prove effective against the BPA-induced intoxication and significantly (p < 0.05) restored the level of free amino acids. Lipid metabolites, L-carnitine, sphinganine, phytosphingosine, and lysophosphatidylcholine were also determined in the mice serum. A significant (p < 0.05) decline in glutathione peroxidase (GPx), superoxide dismutase (SOD,) glutathione, and catalase levels and an elevation in malondialdehyde level in the BPA group confirmed the generation of oxidative stress and lipid peroxidation in experimental mice exposed to BPA. The expression of Carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II (CPT-II), lecithin–cholesterol acyltransferase (LCAT), carnitine O-octanoyltransferase (CROT), carnitine-acylcarnitine translocase (CACT), and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) genes was significantly upregulated in the liver tissue homogenates of experimental mice exposed to BPA, although RSV regulated the expression of these genes when compared with BPA treated experimental mice. CPT-I, CPT-II, and CACT genes are located in the mitochondria and are involved in the metabolism and transportation of carnitine. Hence, this study confirms that BPA exposure induced oxidative stress, upregulated gene expression, and impaired lipid and amino acid metabolism in experimental mice

    Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan

    No full text
    Background and Objective: Bacterial infections are among the major complications of many viral respiratory tract illnesses, such as influenza and coronavirus disease-2019 (COVID-19). These bacterial co-infections are associated with an increase in morbidity and mortality rates. The current observational study was conducted at a tertiary care hospital in Lahore, Pakistan among COVID-19 patients with the status of oxygen dependency to see the prevalence of bacterial co-infections and their antibiotic susceptibility patterns. Materials and Methods: A total of 1251 clinical samples were collected from already diagnosed COVID-19 patients and tested for bacterial identification (cul-tures) and susceptibility testing (disk diffusion and minimum inhibitory concentration) using gold standard diagnostic methods. Results: From the total collected samples, 234 were found positive for different bacterial isolates. The most common isolated bacteria were Escherichia coli (E. coli) (n = 62) and Acinetobacter baumannii (A. baumannii) (n = 47). The E. coli isolates have shown the highest resistance to amoxicillin and ampicillin, while in the case of A. baumannii, the highest resistance was noted against tetracycline. The prevalence of methicillin resistant Staphylococcus aureus (MRSA) was 14.9%, carbapenem resistant Enterobacteriaceae (CRE) was 4.5%, and vancomycin resistant Enterococ-cus (VRE) was 3.96%. Conclusion: The results of the current study conclude that empiric antimicro-bial treatment in critically ill COVID-19 patients may be considered if properly managed within institutional or national level antibiotic stewardship programs, because it may play a protective role in the case of bacterial co-infections, especially when a patient has other AMR risk factors, such as hospital admission within the previous six months
    corecore