3 research outputs found

    Novel approximate absolute difference hardware

    Get PDF
    Approximate hardware designs have higher performance, smaller area or lower power consumption than exact hardware designs at the expense of lower accuracy. Absolute difference (AD) operation is heavily used in many applications such as motion estimation (ME) for video compression, ME for frame rate conversion, stereo matching for depth estimation. Since most of the applications using AD operation are error tolerant by their nature, approximate hardware designs can be used in these applications. In this paper, novel approximate AD hardware designs are proposed. The proposed approximate AD hardware implementations have higher performance, smaller area and lower power consumption than exact AD hardware implementations at the expense of lower accuracy. They also have less error, smaller area and lower power consumption than the approximate AD hardware implementations which use approximate adders proposed in the literature

    Novel approximate absolute difference hardware

    Get PDF

    Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: numerical modelling and experimental validation

    Get PDF
    Solar co-generation, i.e., the generation of electricity and heat in a single device by concentrating the sunbeams, has the potential to significantly increase the overall system performance. The main challenge is related to the cooling of solar cells. In order to do so, it is essential to reduce the thermal resistance between the cell and heat transfer fluid. This paper features the optimization procedure of a low-cost custom concentrated photovoltaic thermal (CPV-T) receiver for a parabolic trough collector using silicon solar cells. A finite volume model for the thermal process has been developed. Hence, a fluid dynamic thermal simulation of the receiver is presented. The optimized heat sink tube geometries have been manufactured and tested in a lab environment, allowing for a comparison between modelling and experimental test results. Three possible heat sink geometries have been designed and compared regarding their overall heat transfer coefficient with respect to the non-dimensional pumping power, i.e. the ratio between the overall transferred heat and the energy required for pumping. The overall heat transfer coefficient for a finned heat sink has been increased up to 60% with respect to a baseline case without fins under similar conditions.This project has received funding from SOLAR-ERA.NET Cofund 2 joint call undertaking under the European Union’s Horizon 2020 research and innovation programme. This work has also been supported by Scientific and Technological Research Council of Türkiye (TÜBİTAK) under grant number 219M028. The authors acknowledge the Heat and Environment Laboratory, Mechanical Engineering Department, METU, and the help of Bulent G. Akinoglu and Elsen Aydin. D. Santos acknowledges FI AGAUR-Generalitat de Catalunya fellowship (2022FI_B2_00173).Peer ReviewedPostprint (published version
    corecore