5,640 research outputs found

    SASICE: Safety and sustainability in civil engineering

    No full text
    The performance of the built environment and the construction sector are of major importance in Europe’s long term goals of sustainable development in a changing climate. At the same time, the quality of life of all European citizens needs to be improved and the safety of the built environment with respect to man-made and natural hazards, such as flooding and earthquakes, needs to be ensured. Education has a central role to play in the transformation of a construction sector required to meet increasing demands with regard to safety and sustainability. In this work, the SASICE project is presented. The aim of this project is to promote the integration of safety and sustainability in civil engineering education. The project is organised in the context of the Lifelong Learning Programme, funded by the European Community. The coordinator organisation is the University of Bologna. Nine partner universities from different countries are involved in this transnational project. The universities participating to the project constitute a network of high level competences in the civil engineering area, with several opportunities to improve lifelong learning adopting different media: joint curricula, teaching modules and professor and student exchanges. As a response to the challenge regarding new educational methods in sustainable engineering, teaching modules are developed in 4 thematic areas: (1) Safety in construction, (2) Risk induced by Natural Hazards Assessment, (3) Sustainability in construction, and (4) Sustainability at the territorial level. The development of the teaching modules is based on an extensive analysis of the need for highly qualified education on Safety and Sustainability involving all relevant stakeholders (European and national authorities, companies, research institutes, professional organizations, and universities).The main target is enabling students to introduce these advanced topics in their study plans and curricula and reach, at the end of their studies, a specific skill and expertise in safety and sustainability in Civil Engineering. With our natural resources fading away and our infrastructure in dire need of repair, new trends and challenges in civil engineering education in the concept of “Sustainable Development” are needed to be adressed.<br/

    Robust control design of an activated sludge process

    Get PDF

    Épocas de vedação e utilização de capineiras de capim-elefante (Pennisetum purpureum Schum. cv. Cameroon) no nordeste paraense.

    Get PDF
    bitstream/item/57587/1/Oriental-BP35.pd

    Relationship of arterial and exhaled CO2 during elevated artificial pneumoperitoneum pressure for introduction of the first trocar.

    Get PDF
    The present study evaluated the correlation between arterial CO2 and exhaled CO2 during brief high-pressure pneumoperitoneum. Patients were randomly distributed into two groups: P12 group (n=30) received a maximum intraperitoneal pressure of 12mmHg, and P20 group (n=37) received a maximum intraperitoneal pressure of 20mmHg. Arterial CO2 was evaluated by radial arterial catheter and exhaled CO2 was measured by capnometry at the following time points: before insufflation, once intraperitoneal pressure reached 12mmHg , 5 minutes after intraperitoneal pressure reached 12mmHg for the P12 group or 20mmHg for the P20 group, and 10 minutes after intraperitoneal pressure reached 12mmHg for the P12 group or when intraperitoneal pressure had decreased from 20mmHg to 12mmHg, for the P20 group. During brief durations of very high intraperitoneal pressure (20mmHg), there was a strong correlation between arterial CO2 and exhaled CO2. Capnometry can be effectively used to monitor patients during transient increases in artificial pneumoperitoneum pressure

    Invasive monitoring of the clinical effects of high intra-abdominal pressure for insertion of the first trocar.

    Get PDF
    Background: To analyze the effects of transitory, high intra-abdominal pressure on clinical, hemodynamic, blood gas and metabolic parameters.&#xd;&#xa;&#xd;&#xa;Methods: Sixty-seven laparoscopic patients were divided into groups P12 (n = 30, maximum intra-abdominal pressure of 12 mmHg) and P20 (n = 37, maximum intra-abdominal pressure of 20 mmHg). Through radial artery cannulation, mean arterial pressure (MAP) was assessed and blood gas analysis &#x2013; pH, arterial oxygen tension (PaO2), arterial carbon dioxide tension (PaCO2), bicarbonate (HCO3) and base excess (BE) &#x2013; was performed. These parameters were evaluated in both groups at time point zero, before CO2 insufflation; at time point one (TP1), when intra-abdominal pressure of 12 mmHg was reached in both groups; at time point two (TP2), 5 minutes after reaching intra-abdominal pressure of 12 mmHg in group P12 and of 20 mmHg in group P20; and at time point three (TP3), 10 minutes after reaching intra-abdominal pressure of 12 mmHg in group P12 and 10 minutes after TP1 in group P20, when intra-abdominal pressure decreased from 20 mmHg to 12 mmHg. Values out of the normal range or the occurrence of atypical phenomena suggestive of organic disease indicated clinical changes.&#xd;&#xa;&#xd;&#xa;Results: Significant variations in MAP, pH, HCO3 and BE were observed in group P20; these changes, however, were within normal limits. Clinical changes were also within normal limits, and no pathological phenomena were observed.&#xd;&#xa;&#xd;&#xa;Conclusions: Brief, intra-abdominal hypertension for the insertion first trocar insertion causes variations in MAP, pH, HCO3 and BE without adverse effects, and it may protect from iatrogenic injury

    Existence of Open Loop Equilibria for Disturbed Stackelberg Games

    Get PDF
    In this work, we derive necessary and sufficient conditions for the existence of an hierarchic equilibrium of a disturbed two player linear quadratic game with open loop information structure. A convexity condition guarantees the existence of a unique Stackelberg equilibria; this solution is first obtained in terms of a pair of symmetric Riccati equations and also in terms of a coupled of system of Riccati equations. In this latter case, the obtained equilibrium controls are of feedback type
    • 

    corecore