9 research outputs found

    The Schwinger Model on a circle: relation between Path Integral and Hamiltonian approaches

    Full text link
    We solve the massless Schwinger model exactly in Hamiltonian formalism on a circle. We construct physical states explicitly and discuss the role of the spectral flow and nonperturbative vacua. Different thermodynamical correlation functions are calculated and after performing the analytical continuation are compared with the corresponding expressions obtained for the Schwinger model on the torus in Euclidean Path Integral formalism obtained before.Comment: 40 page

    Witten-Veneziano Relation for the Schwinger Model

    Get PDF
    The Witten-Veneziano relation between the topological susceptibility of puregauge theories without fermions and the main contribution of the completetheory and the corresponding formula of Seiler and Stamatescu with theso-called contact term are discussed for the Schwinger model on a circle. Usingthe (Euclidean) path integral and the canonical (Hamiltonian) approaches atfinite temperatures we demonstrate that both formulae give the same result inthe limit of infinite volume and (or) zero temperature

    The General Correlation Function in the Schwinger Model on a Torus

    Full text link
    In the framework of the Euclidean path integral approach we derive the exact formula for the general N-point chiral densities correlator in the Schwinger model on a torusComment: 17 pages, misprints corrected, references adde

    Chiral crystals in strong-coupling lattice QCD at nonzero chemical potential

    Get PDF
    We study the effective action for strong-coupling lattice QCD with one-component staggered fermions in the case of nonzero chemical potential and zero temperature. The structure of this action suggests that at large chemical potentials its ground state is a crystalline `chiral density wave' that spontaneously breaks chiral symmetry and translation invariance. In mean-field theory, on the other hand, we find that this state is unstable. We show that lattice artifacts are partly responsible for this, and suggest that if this phase exists in QCD, then finding it in Monte-Carlo simulations would require simulating on relatively fine lattices. In particular, the baryon mass in lattice units, m_B, should be considerably smaller than its strong-coupling limit of m_B~3.Comment: 33 pages, 8 figure

    Four-point Green functions in the Schwinger Model

    Get PDF
    The evaluation of the 4-point Green functions in the 1+1 Schwinger model is presented both in momentum and coordinate space representations. The crucial role in our calculations play two Ward identities: i) the standard one, and ii) the chiral one. We demonstrate how the infinite set of Dyson-Schwinger equations is simplified, and is so reduced, that a given n-point Green function is expressed only through itself and lower ones. For the 4-point Green function, with two bosonic and two fermionic external `legs', a compact solution is given both in momentum and coordinate space representations. For the 4-fermion Green function a selfconsistent equation is written down in the momentum representation and a concrete solution is given in the coordinate space. This exact solution is further analyzed and we show that it contains a pole corresponding to the Schwinger boson. All detailed considerations given for various 4-point Green functions are easily generizable to higher functions.Comment: In Revtex, 12 pages + 2 PostScript figure

    Weak coupling large-N transitions at finite baryon density

    Get PDF
    We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks), we identify novel third-order deconfining phase transitions as a function of the chemical potential. These transitions in the complex large-N saddle point configurations are interpreted as "melting" of baryons into (s)quarks. They are triggered by the exponentially large (~ exp(N)) degeneracy of light baryon-like states, which include ordinary baryons, adjoint-baryons and baryons made from different spherical harmonics of flavour fields on the three-sphere. The phase diagram of theories with scalar flavours terminates at a phase boundary where baryon number diverges, representing the onset of Bose condensation of squarks.Comment: 38 pages, 7 figure

    The geometric Schwinger model on the Torus, 2

    No full text
    corecore