2 research outputs found

    Removal and preconcentration of cobalt ions from aqueous media using ImHA packed column by on-line SPE system

    No full text
    WOS:000307276400019This work assesses the use of immobilized humic acid (ImHA) onto aminopropyl silica (APS) as a sorbent for the removal and preconcentration of trace amounts of cobalt ions by on-line solid phase extraction (SPE) technique in the column system prepared in our laboratory. Different parameters, such as the effect of the pH, concentration, and flow rate, were studied and throughput was observed by a UV detector. All SPE steps were monitored by breakthrough curves used to visualize distribution of cobalt concentration between mobile and solid phase. The solutions collected from stripping steps were analyzed in atomic absorption spectrometer (AAS) and the amount of sorbed ions was calculated. Sorption characteristics were evaluated by using common adsorption isotherms and Scatchard plot analysis. From the obtained results, it was seen that sorption mechanism of cobalt ions were fitted to Langmuir model on a large scale and thought to be localized. Mean free energy (E = 40.82 kJ mol(-1)) calculated from D-R isotherm showed that chemical interactions are more effective than physical interactions. This investigation reveals a new, simple, environmentally friendly, and cost-effective method for removal and preconcentration of cobalt ions from aqueous solutions by a new aminopropyl silica-immobilized humic acid material.Selcuk University Coordination Scientific Research ProjectsSelcuk University [SU-FEF-2003-136]The authors are grateful for kind financial support provided by Selcuk University Coordination Scientific Research Projects, SU-FEF-2003-136

    Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy

    No full text
    WOS:000341463400065PubMed:25127621Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer's law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170 degrees C. Good regression coefficients (R-2) were achieved for FFA, PV, IV, CD and CT with value of > 0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. (C) 2014 Elsevier B.V. All rights reserved.Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)The authors would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) under the 2216 Research Fellowship Program for Foreign Citizens for providing the financial support to carry out this research work and also thanks of Analytical Chemistry Department at Selcuk University, Konya Turkey for providing a good environment for research work
    corecore