26 research outputs found
Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia
Activity of secreted alkaline phosphatase (SEAP) produced by transfected cells is rapidly down-regulated by endoplasmic reticulum (ER) stress independent of transcriptional regulation. This phenomenon was observed in a wide range of cell types triggered by various ER stress inducers. The magnitude of the decrease in SEAP was proportional to the extent of ER stress and inversely correlated with the induction of endogenous ER stress markers grp78 and grp94. In contrast to SEAP, activity of secreted luciferase was less susceptible to ER stress. The decrease in SEAP activity by ER stress was caused by abnormal post-translational modification, accelerated degradation and reduced secretion of SEAP protein. In transgenic mice constitutively producing SEAP, systemic induction of ER stress led to reduction in serum SEAP. In these mice, administration with lipopolysaccharide caused rapid, transient decrease in serum SEAP activity, and it was correlated with up-regulation of grp78 in several organs including the spleen, lung, kidney, liver and heart. These results elucidated for the first time a possible involvement of transient, systemic ER stress in endotoxemia and provided evidence for usefulness of ER stress responsive alkaline phosphatase for real-time monitoring of ER stress in vitro and in vivo
Direct, Continuous Monitoring of Air Pollution by Transgenic Sensor Mice Responsive to Halogenated and Polycyclic Aromatic Hydrocarbons
BACKGROUND: The aryl hydrocarbon receptor (AhR, also called the dioxin receptor) plays crucial roles in toxicologic responses of animals to environmental pollutants, especially to halogenated and polycyclic aromatic hydrocarbons. To achieve direct, continuous risk assessment of air pollution using biological systems, we generated transgenic sensor mice that produce secreted alkaline phosphatase (SEAP) under the control of AhR. METHODS: To characterize responses of the mice to AhR agonists, sensor mice were orally administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3MC), benzo[a]pyrene (B[a]P), or β-naphthoflavone (BNF), and serum levels of SEAP were evaluated. To monitor air pollution caused by cigarette smoke, we placed the mice each day in an experimental smoking room, and evaluated activity of serum SEAP for up to 4 days. Activation of AhR in individual organs was also examined by reverse transcription–polymerase chain reaction (RT-PCR) analysis of SEAP. RESULTS: In response to oral exposure to TCDD, sensor mice exhibited dramatic and sustained activation of AhR. The mice also responded sensitively to 3MC, B[a]P, and BNF. Activation of AhR was dose dependent, and the liver was identified as the main responding organ. After exposure to the smoking environment, sensor mice consistently exhibited transient, reversible activation of AhR. RT-PCR analysis of SEAP revealed that activation of AhR occurred predominantly in the lung. CONCLUSION: We are the first laboratory to demonstrate successfully direct, comprehensive monitoring of air pollution using genetically engineered mammals. The established system would be useful for real risk assessment of halogenated and polycyclic aromatic hydrocarbons in the air, especially in smoking environments. KEY WORDS: aromatic hydrocarbon, aryl hydrocarbon receptor (AhR), cigarette smoke, dioxinresponsive element (DRE), secreted alkaline phosphatase (SEAP), transgenic mouse. Enviro
Transcriptional suppression of nephrin in podocytes by macrophages: Roles of inflammatory cytokines and involvement of the PI3K/Akt pathway
AbstractExpression of nephrin, a crucial component of the glomerular slit diaphragm, is downregulated in patients with proteinuric glomerular diseases. Using conditionally immortalized reporter podocytes, we found that bystander macrophages as well as macrophage-derived cytokines IL-1β and TNF-α markedly suppressed activity of the nephrin gene promoter in podocytes. The cytokine-initiated repression was reversible, observed on both basal and inducible expression, independent of Wilms’ tumor suppressor WT1, and caused in part via activation of the phosphatidylinositol-3-kinase/Akt pathway. These results indicated a novel mechanism by which activated macrophages participate in the induction of proteinuria in glomerular diseases
Novel potential of tunicamycin as an activator of the aryl hydrocarbon receptor – dioxin responsive element signaling pathway
AbstractTunicamycin is a well-known inhibitor of protein glycosylation and used as an inducer of endoplasmic reticulum (ER) stress. We found that tunicamycin induced expression of cytochrome P450 1A1 in a dose-dependent manner. Like dioxin, the transcriptional induction was associated with dose-dependent activation of the dioxin responsive element (DRE). This effect was independent of inhibition of protein glycosylation or induction of ER stress. Pharmacological and genetic inhibition of the aryl hydrocarbon receptor (AhR) significantly attenuated activation of DRE by tunicamycin. These results elucidated the novel potential of tunicamycin as an activator of the AhR – DRE signaling pathway
島根県立大学がA市と共同で行う介護予防教室プログラムの課題
本学ではA市との共同事業として2007年度から認知症一次予防を目的とした介護予防教室を11年間実施してきた。2016年度からは大学の担当者が変更となり,2年が経過した。今回,2015年度まで実施していた介護予防教室と,担当者変更後の2年間の教室を概観し,課題を検討した。その結果,どの年の教室参加者も認知機能や精神機能が維持できていたことが確認できたが,2016年度から運動を強化した結果は出ていなかった。効果的な介護予防教室のために,高齢者の自己効力感を高める地域回想法プログラムの見直し,自宅でできる高齢者にやさしい運動の提案,1年間の取り組みを正確に評価できる評価時期の検討が課題と考えられた
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target