46 research outputs found
Superovulation with an anti-inhibin monoclonal antibody improves the reproductive performance of rat strains by increasing the pregnancy rate and the litter size
繁殖効率を高めたラットの作り方--50年以上実現できなかった過排卵妊娠に成功--京都大学プレスリリース. 2024-05-02.Rats are multiparous rodents that have been used extensively in research; however, the low reproductive performance of some rat strains hampers the broader use of rats as a biomedical model. In this study, the possibility of increasing the litter size after natural mating in rats through superovulation using an anti-inhibin monoclonal antibody (AIMA) was examined. In outbred Wistar rats, AIMA increased the number of ovulated oocytes by 1.3-fold. AIMA did not affect fertilization and subsequent embryonic development, resulting in a 1.4-fold increase in litter size and a high pregnancy rate (86%). In contrast, conventional superovulation by eCG/hCG administration decreased the pregnancy rate to 6–40% and did not increase the litter size. In inbred Brown Norway rats, AIMA increased the litter size by 1.2-fold, and the pregnancy rate increased more than twice (86% versus 38% in controls). AIMA also increased the litter size by 1.5-fold in inbred Tokai High Avoiders and Fischer 344 rats. AIMA increased the efficiency of offspring production by 1.5-, 2.7-, 1.4-, and 1.4-fold, respectively, in the four rat strains. Thus, AIMA may consistently improve the reproductive performance through natural mating in rats, which could promote the use of AIMA in biomedical research
Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of Secondary Cell Wall-Related Transcription Factors
The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula x tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin beta-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation
Association of liver enzyme levels and alveolar bone loss : a cross-sectional clinical study in Sado Island
The interaction of periodontopathic bacteria with host immune system induces the production of inflammatory mediators which leads to alveolar bone loss (ABL), the essential feature of periodontitis. Concurrently, periodontal diseases cause the elevation of blood cytokine levels, the alteration of gut microbiota and the dissemination of enterobacteria to the liver. Owing to these mechanisms, periodontal disease might be a risk for liver dysfunction. Several epidemiological studies have reported associations between periodontal diseases and liver dysfunction, although the association between ABL and liver dysfunction has not been investigated. This cross-sectional study determined if elevated serum liver enzyme levels were associated with ABL in Japanese adults. Japanese adults living on Sado Island who visited Sado General Hospital were invited to participate in the study. Participants over 40 years of age who underwent dental panoramic radiography and blood tests were included. Drinking and smoking habits were self-administered. After excluding patients with edentulous jaw, diagnosed liver diseases, and those on dialysis, data from 44 men and 66 women with a mean age of 73 years were analyzed. The average percentage of ABL for each participant was calculated for mesial and distal sites of all remaining teeth. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) were determined. Univariate analyses were performed to select covariates to be put in multivariate analyses. The association between elevated serum liver enzyme levels and the highest quartile of ABL were assessed by multiple logistic regression analysis. After adjusting for covariates, no significant association was found between elevated serum AST, ALT, or GGT levels as dependent variables and the highest quartile of ABL as an explanatory variable. There was no significant association between the elevation of serum liver enzyme levels and ABL in Japanese adults
Remarkable features of ovarian morphology and reproductive hormones in insulin-resistant Zucker fatty (fa/fa) rats
<p>Abstract</p> <p>Background</p> <p>Zucker fatty (fa/fa) rats are a well-understood model of obesity and hyperinsulinemia. It is now thought that obesity/hyperinsulinemia is an important cause of endocrinological abnormality, but to date there have been no reports on the changes in ovarian morphology or the ovarian androgen profile in rat models of obesity and insulin resistance.</p> <p>Methods</p> <p>In this study we investigated the effects of obesity and hyperinsulinemia on ovarian morphology and the hormone profile in insulin-resistant Zucker fatty rats (5, 8, 12 and 16 weeks of age, n = 6-7).</p> <p>Results</p> <p>Ovaries from 5-week-old fatty rats had significantly greater total and atretic follicle numbers, and higher atretic-to-total follicle ratios than those from lean rats. Ovaries from 12- and 16-week-old fatty rats showed interstitial cell hyperplasia and numerous cysts with features of advanced follicular atresia. In addition, serum testosterone and androstenedione levels significantly declined in fatty rats from age 8 to 16 weeks, so that fatty rats showed significantly lower levels of serum testosterone (12 and 16 weeks) and androstenedione (all weeks) than lean rats. This may reflect a reduction of androgen synthesis during follicular atresia. Serum adiponectin levels were high in immature fatty rats, and although the levels declined significantly as they matured, it remained significantly higher in fatty rats than in lean rats. On the other hand, levels of ovarian adiponectin and its receptors were significantly lower in mature fatty rats than in lean mature rats or immature fatty rats.</p> <p>Conclusions</p> <p>Our findings indicate that ovarian morphology and hormone profiles are significantly altered by the continuous insulin resistance in Zucker fatty rats. Simultaneously, abrupt reductions in serum and ovarian adiponectin also likely contribute to the infertility seen in fatty rats.</p
Double migration of the endangered Tricyrtis formosana (Liliaceae) in Japan
別経路で二度来訪していた絶滅危惧植物 --世界遺産地域における生物多様性の成立過程--. 京都大学プレスリリース. 2024-01-26.The Ryukyu Islands of Japan are a biodiversity hotspot due to geographical and historical factors. Tricyrtis formosana is a perennial herbaceous plant that commonly found in Taiwan. But only a few populations have been identified in a limited habitat on Iriomote Island, while populations of unknown origin occur near human settlements in an area on the main island of Okinawa. To better understand these populations of the phylogenetic uniqueness and intrinsic vulnerability, we conducted comparative analyses including (1) phylogeny and population structure with MIG-seq data, (2) photosynthesis-related traits of plants grown under common conditions and (3) transcriptome analysis to detect deleterious variations. Results revealed that T. formosana was split into two clades by the congeners and that Iriomote and Okinawa populations independently derived from ancestral Taiwanese populations in each clade. Photosynthetic efficiency was lowest in the Iriomote population, followed by Okinawa and Taiwan. Transcriptome analysis showed that the Iriomote population accumulated more deleterious variations, suggesting intrinsic vulnerability. These results indicate that each T. formosana population in Japan is phylogenetically unique and has been independently dispersed from Taiwan, and that the Iriomote population presents a high conservation difficulty with a unique photosynthesis-related characteristic and a larger amount of deleterious variations
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Effects of CREG1 on Age-Associated Metabolic Phenotypes and Renal Senescence in Mice
Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that accelerates p16-dependent cellular senescence in vitro. We recently reported the ability of CREG1 to stimulate brown adipogenesis using adipocyte P2-CREG1-transgenic (Tg) mice; however, little is known about the effect of CREG1 on aging-associated phenotypes. In this study, we investigated the effects of CREG1 on age-related obesity and renal dysfunction in Tg mice. Increased brown fat formation was detected in aged Tg mice, in which age-associated metabolic phenotypes such as body weight gain and increases in blood glucose were improved compared with those in wild-type (WT) mice. Blood CREG1 levels increased significantly in WT mice with age, whereas the age-related increase was suppressed, and its levels were reduced, in the livers and kidneys of Tg mice relative to those in WT mice at 25 months. Intriguingly, the mRNA levels of Ink4a, Arf, and senescence-associated secretory phenotype (SASP)-related genes and p38MAPK activity were significantly lowered in the aged kidneys of Tg mice, in which the morphological abnormalities of glomeruli as well as filtering function seen in WT kidneys were alleviated. These results suggest the involvement of CREG1 in kidney aging and its potential as a target for improving age-related renal dysfunction
Effects of CREG1 on Age-Associated Metabolic Phenotypes and Renal Senescence in Mice
Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that accelerates p16-dependent cellular senescence in vitro. We recently reported the ability of CREG1 to stimulate brown adipogenesis using adipocyte P2-CREG1-transgenic (Tg) mice; however, little is known about the effect of CREG1 on aging-associated phenotypes. In this study, we investigated the effects of CREG1 on age-related obesity and renal dysfunction in Tg mice. Increased brown fat formation was detected in aged Tg mice, in which age-associated metabolic phenotypes such as body weight gain and increases in blood glucose were improved compared with those in wild-type (WT) mice. Blood CREG1 levels increased significantly in WT mice with age, whereas the age-related increase was suppressed, and its levels were reduced, in the livers and kidneys of Tg mice relative to those in WT mice at 25 months. Intriguingly, the mRNA levels of Ink4a, Arf, and senescence-associated secretory phenotype (SASP)-related genes and p38MAPK activity were significantly lowered in the aged kidneys of Tg mice, in which the morphological abnormalities of glomeruli as well as filtering function seen in WT kidneys were alleviated. These results suggest the involvement of CREG1 in kidney aging and its potential as a target for improving age-related renal dysfunction