17 research outputs found

    “Universal” Antimicrobial Combination of Bacitracin and His6-OPH with Lactonase Activity, Acting against Various Bacterial and Yeast Cells

    No full text
    The effect of Bacitracin as an antibiotic acting against Gram-positive bacterial cells was evaluated in combination with hexahistidine-containing organophosphate hydrolase (His6-OPH), possessing lactonase activity against various N-acylhomoserine lactones produced by most Gram-negative bacteria as quorum-sensing molecules. The molecular docking technique was used to obtain in silico confirmation of possible interactions between molecules of His6-OPH and Bacitracin as well as the absence of a significant influence of such interactions on the enzymatic catalysis. The in vitro experiments showed a sufficient catalytic efficiency of action of the His6-OPH/Bacitracin combination as compared to the native enzyme. The notable improvement (up to 3.3 times) of antibacterial efficiency of Bacitracin was revealed in relation to Gram-negative bacteria when it was used in combination with His6-OPH. For the first time, the action of the Bacitracin with and without His6-OPH was shown to be effective against various yeast strains, and the presence of the enzyme increased the antibiotic effect up to 8.5 times. To estimate the role of the enzyme in the success of His6-OPH/Bacitracin with yeast, in silico experiments (molecular docking) with various fungous lactone-containing molecules were undertaken, and the opportunity of their enzymatic hydrolysis by His6-OPH was revealed in the presence and absence of Bacitracin

    Synergistic Antimicrobial Action of Lactoferrin-Derived Peptides and Quorum Quenching Enzymes

    No full text
    Combined use of various antimicrobial peptides (AMPs) with enzymes that hydrolyze the signaling molecules of the resistance mechanism of various microorganisms, quorum sensing (QS), to obtain effective antimicrobials is one of the leading approaches in solving the antimicrobial resistance problem. Our study investigates the lactoferrin-derived AMPs, lactoferricin (Lfcin), lactoferampin and Lf(1-11), as potential partners for combination with enzymes hydrolyzing lactone-containing QS molecules, the hexahistidine-containing organophosphorus hydrolase (His6-OPH) and penicillin acylase, to obtain effective antimicrobial agents with a scope of practical application. The possibility of the effective combination of selected AMPs and enzymes was first investigated in silico using molecular docking method. Based on the computationally obtained results, His6-OPH/Lfcin combination was selected as the most suitable for further research. The study of physical–chemical characteristics of His6-OPH/Lfcin combination revealed the stabilization of enzymatic activity. A notable increase in the catalytic efficiency of action of His6-OPH in combination with Lfcin in the hydrolysis of paraoxon, N-(3-oxo-dodecanoyl)-homoserine lactone and zearalenone used as substrates was established. Antimicrobial efficiency of His6-OPH/Lfcin combination was determined against various microorganisms (bacteria and yeasts) and its improvement was observed as compared to AMP without enzyme. Thus, our findings demonstrate that His6-OPH/Lfcin combination is a promising antimicrobial agent for practical application

    Bacterial Cellulose Containing Combinations of Antimicrobial Peptides with Various QQ Enzymes as a Prototype of an “Enhanced Antibacterial” Dressing: In Silico and In Vitro Data

    No full text
    To improve the action of already in use antibiotics or new antimicrobial agents against different bacteria, the development of effective combinations of antimicrobial peptides (AMPs) with enzymes that can quench the quorum (QQ) sensing of bacterial cells was undertaken. Enzymes hydrolyzing N-acyl homoserine lactones (AHLs) and peptides that are signal molecules of Gram-negative and Gram-positive bacterial cells, respectively, were estimated as “partners” for antibiotics and antimicrobial peptides in newly designed antimicrobial–enzymatic combinations. The molecular docking of six antimicrobial agents to the surface of 10 different QQ enzyme molecules was simulated in silico. This made it possible to choose the best variants among the target combinations. Further, bacterial cellulose (BC) was applied as a carrier for uploading such combinations to generally compose prototypes of effective dressing materials with morphology, providing good absorbance. The in vitro analysis of antibacterial activity of prepared BC samples confirmed the significantly enhanced efficiency of the action of AMPs (including polymyxin B and colistin, which are antibiotics of last resort) in combination with AHL-hydrolyzing enzymes (penicillin acylase and His6-tagged organophosphorus hydrolase) against both Gram-negative and Gram-positive cells

    Catalytic Characteristics of New Antibacterials Based on Hexahistidine-Containing Organophosphorus Hydrolase

    No full text
    Catalytic characteristics of hexahistidine-containing organophosphorus hydrolase (His6-OPH) and its enzyme-polyelectrolyte complexes with poly-l-glutamic acid or poly-l-aspartic acid (His6-OPH/PLD50), hydrolyzing organophosphorous compounds, and N-acyl homoserine lactones were studied in the presence of various antibiotics (ampicillin, gentamicin, kanamycin, and rifampicin). The antibiotics at concentrations below 1 g·L−1 had a negligible inhibiting effect on the His6-OPH activity. Mixed inhibition of His6-OPH was established for higher antibiotic concentrations, and rifampicin was the most potent inhibitor. Stabilization of the His6-OPH activity was observed in the presence of antibiotics at a concentration of 0.2 g·L−1 during exposure at 25–41 °C. Molecular docking of antibiotics to the surface of His6-OPH dimer revealed the antibiotics binding both to the area near active centers of the enzyme subunits and to the region of contact between subunits of the dimer. Such interactions between antibiotics and His6-OPH were verified with Fourier-transform infrared (FTIR) spectroscopy. Considering all the results of the study, the combination of His6-OPH/PLD50 with β-lactam antibiotic ampicillin was established as the optimal one in terms of exhibition and persistence of maximal lactonase activity of the enzyme

    Impact of Perfluorocarbons with Gas Transport Function on Growth of Phototrophic Microorganisms in a Free and Immobilized State and in Consortia with Bacteria

    No full text
    The effects of the presence of perfluorocarbons (PFC) with a gas transport function in media with different phototrophic microorganisms on their growth rates and the accumulation of their biomass when using free and immobilized cells as inoculums were investigated. The significant increase in the average rate of biomass accumulation as well as levels of biomass accumulation in the presence of various PFCs were established for Chlorella vulgaris cells. When 1 g/L glycerol was introduced into the growth medium with PFCs and C. vulgaris cells, the increase in the rate of biomass accumulation was 9–32%. The maximum intracellular ATP concentrations corresponded to the combination of microalgae (Chlorella vulgaris) with bacterial cells (Pseudomonas esterophilus and Rhodoccus ruber) obtained with a mass ratio of 25:1. It provided for the formation of a consortium, which was able to accumulate the maximum amount of microalgae biomass for 3 days in the medium with PFCs and organophosphorus pesticide. The obtained data allow, on the one hand, predicting the growth of microalgae under environmental conditions in media with PFC pollution and, on the other hand, developing approaches to regulation of phototrophic microorganisms’ growth in order to obtain and use their high biomass yields for various purposes

    Impact of Perfluorocarbons with Gas Transport Function on Growth of Phototrophic Microorganisms in a Free and Immobilized State and in Consortia with Bacteria

    No full text
    The effects of the presence of perfluorocarbons (PFC) with a gas transport function in media with different phototrophic microorganisms on their growth rates and the accumulation of their biomass when using free and immobilized cells as inoculums were investigated. The significant increase in the average rate of biomass accumulation as well as levels of biomass accumulation in the presence of various PFCs were established for Chlorella vulgaris cells. When 1 g/L glycerol was introduced into the growth medium with PFCs and C. vulgaris cells, the increase in the rate of biomass accumulation was 9–32%. The maximum intracellular ATP concentrations corresponded to the combination of microalgae (Chlorella vulgaris) with bacterial cells (Pseudomonas esterophilus and Rhodoccus ruber) obtained with a mass ratio of 25:1. It provided for the formation of a consortium, which was able to accumulate the maximum amount of microalgae biomass for 3 days in the medium with PFCs and organophosphorus pesticide. The obtained data allow, on the one hand, predicting the growth of microalgae under environmental conditions in media with PFC pollution and, on the other hand, developing approaches to regulation of phototrophic microorganisms’ growth in order to obtain and use their high biomass yields for various purposes

    Various Biomimetics, Including Peptides as Antifungals

    No full text
    Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects

    “Unity and Struggle of Opposites” as a Basis for the Functioning of Synthetic Bacterial Immobilized Consortium That Continuously Degrades Organophosphorus Pesticides

    No full text
    This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera Rhodococcus and Pseudomonas, the required combination of two cultures (P. esterophilus and R. ruber) was found. A further change in the ratio between the biomass of the cells inside the granules of IMAC, increasing the packing density of cells inside the same granules and decreasing the size of the granules with IMAC, gave a 225% improvement in the degradation activity of the cell combination. The increase in the velocity and the OPP degradation degree was 4.5 and 16 times greater than the individual P. esterophilus and R. ruber cells, respectively. Multiple uses of the obtained IMAC were demonstrated. The increase in IMAC lactonase activity confirmed the role of the cell quorum in the action efficiency of the synthetic biosystem. The co-inclusion of natural strains in a carrier during immobilization strengthened the IMAC activities without the genetic enhancement of the cells

    Not a Mistake but a Feature: Promiscuous Activity of Enzymes Meeting Mycotoxins

    No full text
    Mycotoxins are dangerous compounds and find multiple routes to enter living bodies of humans and animals. To solve the issue and degrade the toxicants, (bio)catalytic processes look very promising. Hexahistidine-tagged organophosphorus hydrolase (His6-OPH) is a well-studied catalyst for degradation of organophosphorus neurotoxins and lactone-containing quorum-sensing signal molecules. Moreover, the catalytic characteristics in hydrolysis of several mycotoxins (patulin, deoxynivalenol, zearalenone, and sterigmatocystin) were studied in this investigation. The best Michaelis constant and catalytic constant were estimated in the case of sterigmatocystin and patulin, respectively. A possible combination of His6-OPH with inorganic sorbents treated by low-temperature plasma was investigated. Further, enzyme–polyelectrolyte complexes of poly(glutamic acid) with His6-OPH and another enzymatic mycotoxin degrader (thermolysin) were successfully used to modify fiber materials. These catalytically active prototypes of protective materials appear to be useful for preventing surface contact and exposure to mycotoxins and other chemicals that are substrates for the enzymes used
    corecore