4 research outputs found

    Farmers’ Responses to Changing Hydrological Trends in the Niger Basin Parts of Benin

    No full text
    Sub-Saharan Africa is highly vulnerable to climate change given its low capacities of resilience to the enormous challenges climate change will pose. Research aimed at evaluating changes in hydrological trends and methods of adaptation was conducted in the Niger Basin parts of Benin at the peak of the rainy season in the year 2012. Rainfall and river discharge were analyzed from 1950–2010 in order to generate patterns of changes in the region. Structured questionnaires were used to evaluate the perceptions of 14 farming communities on climate-related issues and their methods of adaptations. Mann-Kendall and Pettit trend analyses were conducted for rainfall and river discharge. The findings indicated that significant decreases characterized rainfall and river discharge in the period of study. Flash flood was considered the major challenge faced in the region according to more than 90% of crop, animal, and fish farmers. Aside from that, decrease in water availability was identified as an additional challenge. Irrigation, diversification, water treatment, drainage, small dams, and dikes were reported as the common adaptation mechanisms in the catchments. This study will help in designing sustainable adaptation mechanisms to abrupt changes in the hydrology of the region

    Farmers’ Responses to Changing Hydrological Trends in the Niger Basin Parts of Benin

    No full text
    Sub-Saharan Africa is highly vulnerable to climate change given its low capacities of resilience to the enormous challenges climate change will pose. Research aimed at evaluating changes in hydrological trends and methods of adaptation was conducted in the Niger Basin parts of Benin at the peak of the rainy season in the year 2012. Rainfall and river discharge were analyzed from 1950–2010 in order to generate patterns of changes in the region. Structured questionnaires were used to evaluate the perceptions of 14 farming communities on climate-related issues and their methods of adaptations. Mann-Kendall and Pettit trend analyses were conducted for rainfall and river discharge. The findings indicated that significant decreases characterized rainfall and river discharge in the period of study. Flash flood was considered the major challenge faced in the region according to more than 90% of crop, animal, and fish farmers. Aside from that, decrease in water availability was identified as an additional challenge. Irrigation, diversification, water treatment, drainage, small dams, and dikes were reported as the common adaptation mechanisms in the catchments. This study will help in designing sustainable adaptation mechanisms to abrupt changes in the hydrology of the region

    Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa

    No full text
    Climate simulations in West Africa have been attributed with large uncertainties. Global climate projections are not consistent with changes in observations at the regional or local level of the Niger basin, making management of hydrological projects in the basin uncertain. This study evaluates the potential of using the quantile mapping bias correction to improve the Coupled Model Intercomparison Project (CMIP5) outputs for use in hydrological impact studies. Rainfall and temperature projections from 8 CMIP5 Global Climate Models (GCM) were bias corrected using the quantile mapping approach. Impacts of climate change was evaluated with bias corrected rainfall, temperature and potential evapotranspiration (PET). The IHACRES hydrological model was adapted to the Niger basin and used to simulate impacts of climate change on discharge under present and future conditions. Bias correction with quantile mapping significantly improved the accuracy of rainfall and temperature simulations compared to observations. The mean of six efficiency coefficients used for monthly rainfall comparisons of 8 GCMs to the observed ranged from 0.69 to 0.91 and 0.84 to 0.96 before and after bias correction, respectively. The range of the standard deviations of the efficiency coefficients among the 8 GCMs rainfall data were significantly reduced from 0.05–0.14 (before bias correction) to 0.01–0.03 (after bias correction). Increasing annual rainfall, temperature, PET and river discharge were projected for most of the GCMs used in this study under the RCP4.5 and RCP8.5 scenarios. These results will help improving projections and contribute to the development of sustainable climate change adaptation strategies
    corecore