386 research outputs found
Structure of the Alkali-metal-atom-Strontium molecular ions: towards photoassociation and formation of cold molecular ions
The potential energy curves, permanent and transition dipole moments, and the
static dipolar polarizability, of molecular ions composed of one alkali-metal
atom and a Strontium ion are determined with a quantum chemistry approach. The
molecular ions are treated as effective two-electron systems and are treated
using effective core potentials including core polarization, large gaussian
basis sets, and full configuration interaction. In the perspective of upcoming
experiments aiming at merging cold atom and cold ion traps, possible paths for
radiative charge exchange, photoassociation of a cold Lithium or Rubidium atom
and a Strontium ion are discussed, as well as the formation of stable molecular
ions
CERN and the Environment
The impact of CERN’s activities on the surrounding environment is carefully monitored by the Organization via a complete environmental monitoring programme, which is defined and run in agreement with the authorities of Switzerland and France. This programme covers both radiological and conventional aspects. So far the environmental impact of CERN was shown to be negligible. In particular, CERN’s radiological impact is a fraction of the variation of the natural exposure at different locations of the surrounding region. As the site of the Organization is on the territory of two countries and straddles the Swiss-French border, the implementation of its environmental policy requires specific procedures and a very transparent communication towards the Host States authorities and the public opinion. This paper reports the official CERN speech delivered for the opening of the international conference Enviroinfo 2004 that was held at CERN in October 2004
Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels
We have calculated the isotropic coefficients characterizing the
long-range van der Waals interaction between two identical heteronuclear
alkali-metal diatomic molecules in the same arbitrary vibrational level of
their ground electronic state . We consider the ten species made
up of Li, Na, K, Rb and Cs. Following our
previous work [M.~Lepers \textit{et.~al.}, Phys.~Rev.~A \textbf{88}, 032709
(2013)] we use the sum-over-state formula inherent to the second-order
perturbation theory, composed of the contributions from the transitions within
the ground state levels, from the transition between ground-state and excited
state levels, and from a crossed term. These calculations involve a combination
of experimental and quantum-chemical data for potential energy curves and
transition dipole moments. We also investigate the case where the two molecules
are in different vibrational levels and we show that the Moelwyn-Hughes
approximation is valid provided that it is applied for each of the three
contributions to the sum-over-state formula. Our results are particularly
relevant in the context of inelastic and reactive collisions between ultracold
bialkali molecules, in deeply bound or in Feshbach levels
Calculation of accurate permanent dipole moments of the lowest states of heteronuclear alkali dimers using extended basis sets
The obtention of ultracold samples of dipolar molecules is a current
challenge which requires an accurate knowledge of their electronic properties
to guide the ongoing experiments. In this paper, we systematically investigate
the ground state and the lowest triplet state of mixed alkali dimers (involving
Li, Na, K, Rb, Cs) using a standard quantum chemistry approach based on
pseudopotentials for atomic core representation, gaussian basis sets, and
effective terms for core polarization effects. We emphasize on the convergence
of the results for permanent dipole moments regarding the size of the gaussian
basis set, and we discuss their predicted accuracy by comparing to other
theoretical calculations or available experimental values. We also revisit the
difficulty to compare computed potential curves among published papers, due to
the differences in the modelization of core-core interaction.Comment: accepted to J. Chem. Phy
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
Electronic structure of the Magnesium hydride molecular ion
In this paper, using a standard quantum chemistry approach based on
pseudopotentials for atomic core representation, Gaussian basis sets, and
effective core polarization potentials, we investigate the electronic
properties of the MgH ion. We first determine potential energy curves for
several states using different basis sets and discuss their predicted accuracy
by comparing our values of the well depths and position with other available
results. We then calculate permanent and transition dipole moments for several
transitions. Finally for the first time, we calculate the static dipole
polarizability of MgH as function of the interatomic distance. This study
represents the first step towards the modeling of collisions between trapped
cold Mg ions and H molecules.Comment: submitted to J. Phys. B, special issue on Cold trapped ion
Optimal trapping wavelengths of Cs molecules in an optical lattice
The present paper aims at finding optimal parameters for trapping of Cs
molecules in optical lattices, with the perspective of creating a quantum
degenerate gas of ground-state molecules. We have calculated dynamic
polarizabilities of Cs molecules subject to an oscillating electric field,
using accurate potential curves and electronic transition dipole moments. We
show that for some particular wavelengths of the optical lattice, called "magic
wavelengths", the polarizability of the ground-state molecules is equal to the
one of a Feshbach molecule. As the creation of the sample of ground-state
molecules relies on an adiabatic population transfer from weakly-bound
molecules created on a Feshbach resonance, such a coincidence ensures that both
the initial and final states are favorably trapped by the lattice light,
allowing optimized transfer in agreement with the experimental observation
- …