3 research outputs found

    Assessing Climate Change Impact on Gilgel Abbay and Gumara Watershed Hydrology, the Upper Blue Nile Basin, Ethiopia

    Full text link
    Climate change and variability have significant influences on hydrological cycles and the availability of water in the Horn of Africa. Projections of six General Circulation Models (GCMs) in association with high (A2) and low (B1) emission scenarios were adopted in this study from the Special Report on Emission Scenarios (SRES) for the period 2020 - 2039 to assess the impacts of climate changes on the Gilgel Abbay and Gumara watershed hydrology, the upper Blue Nile basin, Ethiopia. The GCMs selected were screened in accordance with baseline climate statistics of study areas. A weather generator was employed to generate daily temperature and precipitation to drive the General Water Loading Function (GWLF) hydrological model for simulating runoffs. Projected changes in temperature differences and precipitation ratios relative to the baseline were analyzed to explain the variations in evapotranspiration and the influences on runoff. Despite the fact that the projected magnitude varies among GCMs, increasing runoff in both wet and dry seasons was observed for both watersheds, attributable mainly to the increase in precipitation projected by most GCMs. In contrast to the great increases in runoff, variations in evapotranspiration are less significant. The projected runoff in both watersheds implies increased potential for promoting agricultural irrigation in the dry season. Furthermore, it would allow greater inflow to Lake Tana, the largest contributor to the Ethiopian Renaissance Dam on the Blue Nile. Therefore, concerned local, state, and federal government organizations shall be prepared to harness opportunities from the projected increase in runoff

    Impact of Climate Change on Runoff in the Gilgel Abbay Watershed, the Upper Blue Nile Basin, Ethiopia

    No full text
    Hydrological assessment is critical to the successful implementation of adaption measures. In this study, projections of seven global circulation models (GCMs) associated with high and medium–low Representative Concentration Pathways (RCP 8.5 and RCP 4.5) for the period 2021–2040 and 2081–2100 were adopted to assess changes on runoffs in the Gilgel Abbay watershed, the upper Blue Nile basin. A weather generator was employed to generate daily temperature and precipitation to drive a hydrological model for impact assessment. Despite the projected magnitude of changes varied among different GCMs and RCPs, increasing runoffs in wet-season and decreasing in dry-season are observed in both periods, mainly attributed to the change in projected precipitation. Such changes are profound in cases of RCP 8.5 with respect to those of RCP 4.5 and in cases of 2081–2100 with respect to those of 2021–2040. Although the increasing runoffs would provide greater inflow to Lake Tana, the increase of precipitation in wet-season would imply a higher possibility of flash floods. On the other hand, decrease runoffs in dry-season further intensify existing shortage of irrigation water demand. These changes will have deleterious consequences on the economic wellbeing of the country and require successful implementation of adaption measures to reduce vulnerability
    corecore