2,289 research outputs found
Towards Optimal Energy Harvesting Receiver Design in MIMO Systems
In this paper, we investigate a multiple-input multiple-output (MIMO) system
with simultaneous information detection (ID) and energy harvesting (EH)
receiver. This point-to-point system operates in the vicinity of active
interfering nodes. The receiver performs power splitting where a portion of
received signal undergoes analog energy harvesting circuitry. Further, the
information content of the other portion is extracted after performing digital
beamforming. In this MIMO system, information carrier eigen-modes are not
necessarily the eigen-modes with the strongest energy level. Hence, it is
beneficial to perform independent beamforming at the receiver of MIMO-P2P
channel. Here, we utilize a hybrid analog/digital beamforming for the purpose
of simultaneous ID and EH in such scenarios. This design, provides extra design
degrees-of-freedom in eigen-mode selection for ID and EH purposes
independently. Worst-case performance of this receiver structure is discussed.
Finally, its benefits is compared to the classical receiver structure and the
gains are highlighted
A Spectral-Scanning Nuclear Magnetic Resonance Imaging (MRI) Transceiver
An integrated spectral-scanning nuclear magnetic resonance imaging (MRI) transceiver is implemented in a 0.12 mum SiGe BiCMOS process. The MRI transmitter and receiver circuitry is designed specifically for small-scale surface MRI diagnostics applications where creating low (below 1 T) and inhomogeneous magnetic field is more practical. The operation frequency for magnetic resonance detection and analysis is tunable from 1 kHz to 37 MHz, corresponding to 0-0.9 T magnetization for ^1H (hydrogen). The concurrent measurement bandwidth is approximately one frequency octave. The chip can also be used for conventional narrowband nuclear magnetic resonance (NMR) spectroscopy from 1 kHz up to 250 MHz. This integrated transceiver consists of both the magnetic resonance transmitter which generates the required excitation pulses for the magnetic dipole excitation, and the receiver which recovers the responses of the dipoles
A Spectral-Scanning Magnetic Resonance Imaging (MRI) Integrated System
An integrated spectral-scanning magnetic
resonance imaging (MRI) technique is implemented in a
0.12ÎĽm SiGe BiCMOS process. This system is designed for
small-scale MRI applications with non-uniform and low
magnetic fields. The system is capable of generating
customized magnetic resonance (MR) excitation signals, and
also recovering the MR response using a coherent direct
conversion receiver. The operation frequency is tunable from
DC to 37MHz for wide-band MRI and up to 250MHz for
narrow-band MR spectroscopy
- …