34 research outputs found

    Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer

    Get PDF
    The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common ÎČ-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease

    Meta-analysis of the relationship between psychosocial indexes with mental health

    No full text
    Background: The expansion of studies that done in the demand of effective factors such as social factors on mental health provides the ground work for the combination of these studies. So, this meta-analysis was implemented to determine the summary effect size of the relationship between social indexes and mental health measures Material and Methods: The method used in this study is a Meta-Analysis. To achieve above aim used of quantitative findings from 46 studies, that computed 77 effect sizes from these. The studies that were used in this study collected from databases such as magiran, noormags, Scientific Information Database and proceeding articles that published in the Seminars of college student’s Mental Health. After reviewing the inclusion and exclusion criteria, the correlation effect sizes in selected studies were analyzed with the CMA2 software. In this study, were calculated both random and fixed models, that selected random model, according to the results of the heterogeneity analysis of the Q and I2 factors. Results: The results showed that the combinational effect size of the studies obtained 0.139, after eliminated 10 effect sizes. The combined effect size of studies was calculated low based on Cohen's criteria. Also, the results of heterogeneity analysis indicated that there are moderating variables in the studies. The evidence of this meta-analysis associated with prior theoretical and empirical foundations, indicates the relationship between social support and mental health. Conclusion: According to the results of this meta-analysis for successful mental health programs due to cultural and social issues will be necessary

    IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M

    No full text
    The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells

    Cell surface expression of 78-kDa glucose-regulated protein (GRP78) mediates diabetic nephropathy

    No full text
    Published, Papers in Press, March 26, 2019.The 78-kDa glucose-regulated protein (GRP78) is a well-established endoplasmic reticulum (ER)-resident chaperone that maintains protein homeostasis and regulates the unfolded protein response. Under conditions of ER stress, GRP78 is also expressed at the cell surface and implicated in tumorigenesis, immunity, and cellular signaling events. The role of cell surface-associated GRP78 (csGRP78) in the pathogenesis of diabetic nephropathy has not yet been defined. Here we explored the role of csGRP78 in regulating high glucose (HG)-induced profibrotic AKT Ser/Thr kinase (AKT) signaling and up-regulation of extracellular matrix proteins. Using primary kidney mesangial cells, we show that HG treatment, but not the osmotic control mannitol, induces csGRP78 expression through an ER stress-dependent mechanism. We found that csGRP78, known to be located on the outer membrane leaflet, interacts with the transmembrane protein integrin ÎČ1 and activates focal adhesion kinase and downstream PI3K/AKT signaling. Localization of GRP78 at the cell surface and its interaction with integrin ÎČ1 were also required for extracellular matrix protein synthesis in response to HG. Surprisingly, both the N and C termini of csGRP78 were necessary for this profibrotic response. Increased localization of GRP78 at the plasma membrane was also found in the glomerular mesangial area of type 1 diabetic mice in two different models (streptozotocin-induced and Akita). In freshly isolated glomeruli from Akita mice, csGRP78 co-localized with the mesangial cell surface marker α8-integrin. In conclusion, our work reveals a role for csGRP78 in HG-induced profibrotic responses in mesangial cells, informing a potential approach to treating diabetic nephropathy.Richard Van Krieken, Neel Mehta, Tony Wang, Mengyu Zheng, Renzhong Li, Bo Gao, Ehab Ayaub, Kjetil Ask, James C. Paton, Adrienne W. Paton, X Richard C. Austin, and X Joan C. Krepinsk

    Reprogramming of profibrotic macrophages for treatment of bleomycin‐induced pulmonary fibrosis

    No full text
    Abstract Fibrotic diseases cause organ failure that lead to ~45% of all deaths in the United States. Activated macrophages stimulate fibrosis by secreting cytokines that induce fibroblasts to synthesize collagen and extracellular matrix proteins. Although suppression of macrophage‐derived cytokine production can halt progression of fibrosis, therapeutic agents that prevent release of these cytokines (e.g., TLR7 agonists) have proven too toxic to administer systemically. Based on the expression of folate receptor ÎČ solely on activated myeloid cells, we have created a folate‐targeted TLR7 agonist (FA‐TLR7‐54) that selectively accumulates in profibrotic macrophages and suppresses fibrosis‐inducing cytokine production. We demonstrate that FA‐TLR7‐54 reprograms M2‐like fibrosis‐inducing macrophages into fibrosis‐suppressing macrophages, resulting in dramatic declines in profibrotic cytokine release, hydroxyproline biosynthesis, and collagen deposition, with concomitant increases in alveolar airspaces. Although nontargeted TLR7‐54 is lethal at fibrosis‐suppressing doses, FA‐TLR7‐54 halts fibrosis without evidence of toxicity. Taken together, FA‐TLR7‐54 is shown to constitute a novel and potent approach for treating fibrosis without causing dose‐limiting systemic toxicities
    corecore